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ABSTRACT

A mathematical model is presented for comparing geometric and image-based

simplification methods. Geometric simplification reduces the number of polygons in the

virtual object and image-based simplification replaces the object with an image. Our model

integrates and extrapolates existing accuracy estimates, enabling the comparison of different

simplification methods in order to choose the most efficient method in a given situation.

The model compares data transfer and rendering load of the methods. Byte size and

expected lifetime of simplifications are calculated as a function of the desired visual quality

and the position and movement of the viewer. An example result is that in typical viewing and

rendering conditions and for objects with a radius in the order of one meter, imposter

techniques can be used at viewing distances above fifteen meters. Below that, simplified

polygon objects are required, and below one meter distance the full-resolution virtual object

has to be rendered. An electronic version of the model is available on the web.

INDEX TERMS: realtime rendering, dynamic geometry simplification, imposters,

resource load, thin client, mathematical model

1 INTRODUCTION

Various geometric and image-based simplification techniques, such as simple imposters

[Schaufler96, Maciel95], meshed imposters [Sillion97, Decoret99] and simplified polygon

models [Schroeder92] have been developed to adapt the complexity of a scene to the available

bandwidth and capacity of the rendering engine and network. These simplification and

imposter techniques often preserve, for a given viewpoint, crucial aspects of the objects such



as contour and front image, while sacrificing geometric accuracy for other viewpoints. This

introduces the notion of life time for the simplified representation: as the viewpoint changes,

the visual distortion will grow and will run the simplification obsolete. The representation

then will have to be refreshed or replaced with another form of geometric simplification.

We assume that the rendering and simplification are separated and can be characterised as

a server-client architecture, where the server holds the complete scene model data base and

supplies the rendering client with a scene description of reduced size with the appropriate

level of detail. This simplified scene can be rendered in realtime while making as little

sacrifices to the image quality as possible. A similar client-server setup can be found in web-

based systems where the data transfer capacity and latency of the communication link, as well

as the temporal validity of parts of the model imposes additional constraints on the model

complexity [Campbell98, Kim96]. Our focus is on thin clients, such as mobile phones and

mobile augmented reality systems [UbiCom01], where it is essential to manage the CPU-

memory- and communication load on the client. Nevertheless, our model also applies to fat-

client setups. We will restrict the object representations to single-resolution meshes with

multi-resolution textures, in order to avoid excessive complexity in the modelling.

Intuitively, simple imposters are cheapest to transmit and render, and remain correct

relatively long if the object is far away. But for nearby objects the viewpoint changes

relatively rapidly and quickly outdates the imposter. In that case a simplified polygon object is

preferable. For objects at moderate distance, the meshed imposter seems to be the most

appropriate. See Figure 1. Shade et al. [Shade98] suggests a similar use of various

simplification methods.
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Figure 1. Various simplification methods are most

effective at different distances.

Our purpose is (1) to compare the different simplification methods and (2) to select the

appropriate representations dynamically given limited resources. For this, we present a model

for these simplification methods that relates the load on the communication link and the load

on the rendering engine to the visual accuracy.

We start with a discussion of previous work. In section 3 we give an overview of our

approach, and list the assumptions we made. In section 4 we derive distortion formulas for the

various simplification methods. These formulas are inverted in section 5, to estimate the

required number of polygons and the size of the textures given a desired accuracy. These sizes

can then be converted into a byte size. The communication load is then estimated by dividing

the estimated byte size by the planned lifetime of the virtual objects. In section 6, results are

plotted for the various simplification methods, to compare the load on the communication link

and on the rendering engine. A partial validation of the model is given in section 7.

Conclusions are summarised in section 8.

2 PREVIOUS WORK

2.1 Latency in thin-client rendering architectures

This section reviews latency issues with respect to thin-client architectures. Latency is the

time lag between the moment the user changes his viewpoint and the moment the images for

his new viewpoint are actually presented to him. Latency is a problem with many virtual



reality (VR) and augmented reality (AR) applications, as it will cause incorrect placement and

floating of virtual objects, and may even cause simulator sickness. For VR, latencies of 60 to

150 ms are very noticeable [Aliaga97] and for car driving 30 ms seems the maximum

[Padmos92]. Prediction has been used to alleviate these problems [Azuma95]. However such

predictions give acceptable results only when the predicted time is very small, and problems

become worse as headsets become lighter and the user can move around less encumbered.

With AR, the latency requirements are even tighter, as displacements between real and virtual

objects can be observed directly. The definitive answer to resolve latency problems seems to

adjust the rendering pipeline architecture to allow low latency rendering [Olano95,

PasmanCG99, Regan94].

Regan and Pose [Regan94] inserted five frame buffers instead of the usual single frame

buffer between the rendering engine and display. Each of the five buffers has its own

rendering rate ranging from 3.75 to 60 Hz, and the virtual objects are assigned to the

appropriate buffer according to their refresh requirements. The buffers contain an image

which completely surrounds the viewer, enabling quick generation of images for new viewing

directions. The currently visible part from each of the buffers is merged in realtime during

display scan-out, giving latencies in the order of a few microseconds only. Although a very

clean solution, this approach heavily increases the amount of display memory required and

number of pixels to be drawn into the buffers, and the low latency is reached only when the

viewpoint rotates, but not when it translates as well. Furthermore, this approach still requires

the client to have the full, unsimplified virtual objects available for rendering, posing high

loads on the network connection.

An extreme form of thin-client rendering architecture is a mobile AR system, where the

user is wearing a see-through display that receives its information over a wireless link

[UbiCom01, PasmanVAA01]. Here the constraints are extremely severe: AR requires a

latency of less than 10 ms between a change of viewpoint and the refresh of the display

[PasmanCG99, Azuma97, Padmos92]. Moreover, the mobile link has a limited bandwidth (2-

10 Mbit/s) which may fail now and then, and introduces by itself a latency of approx. 100 ms.



Finally, the client should be lightweight and low-power, which limits the possibilities for local

storage and processing.

In a distributed rendering system, a latency requirement of less than 10 ms can only be met

with a latency-layered structure. A first coarse approximation is rendered instanteously in the

client which is then successively refined with additional information from the backbone. In

[Levoy95] an approximate image is rendered using a coarse polygon model and its appearance

is then improved by sending additional texture information from the backbone. A similar

approach is presented in [Mann97] where a first approximation is derived by warping the old

image for the new viewpoint. The image is then corrected with an incremental image update

sent by the backbone. Although these methods mask the visual effects of the network latency,

the extra rendering effort in the client increases the overall latency within the client itself.
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Figure 2. Latency layered rendering system.

Figure 2 shows the structure that we chose for our mobile AR system [UbiCom01]. This

structure aims to provide the client with the appropriate simplifications in time, without

sacrificing image quality. The server holds the model data base and compiles the scene graph

every second into a viewpoint dependent representation. With a new viewpoint estimate based

on vision tracking, obtained a few times per second, the simplified scene graph is further

adapted and compiled into a display list. This display list and the associated imposter textures

are then transferred to the mobile unit and repeatedly re-rendered for new viewpoint estimates

based on inertial tracking.



To keep the latency below 10 ms, the client generates image parts just ahead of the

display's raster beam. The display is subdivided into four horizontal slices, and the image for

each slice is rendered with a new viewpoint (every 4 ms). In this way we can use conventional

polygon rendering hardware to render approximately 350 texture-mapped polygons with a

maximum latency of 10 ms [PasmanCG99, PasmanLLR99].

2.2 Choices concerning scene simplification

Various methods have been proposed to simplify objects in a virtual scene (Figure 3). The

simple imposter [Schaufler96, AliagaLastra99, Maciel95, Ebbesmeyer98, Shade96], also

called billboard in VRML [WEB3D02] replaces the object or a group of objects with a single

image. The meshed imposter [Sillion97, Decoret99, Darsa98, Riegel98], sometimes called

textured depth mesh [AliagaCohen99], also consists of a single image but now the image is

mapped onto a depth mesh that roughly approximates one side of the object. The simplified

polygon object is a full 3D approximation of the original 3D object, but with less polygons.

The image with depth (IwD) [McMillan97, Mann97, Mark99] is a single image where each

image pixel has a separate depth value. Finally, the layered depth image (LDI) [Shade98,

Mark99] is an extension on the IwD, where each pixel stores multiple color/depth pairs.



Figure 3. A number of scene simplification methods. From top left, in clockwise order: the

original object, simplified polygon object, meshed imposter, IwD and simple imposter.

Often the image is placed on a billboard rotating only around the vertical axis in order to

keep it facing as good as possible towards the observer [WEB3D02]. We use a more general

simple imposter that can rotate about two axes, which is perfectly aimed at the observer at

each refresh but does not rotate between refreshes [Schaufler96].

Other simplification mechanisms exist, but they are less relevant for thin-client rendering

systems. We do not consider light fields and volume models, because of their heavy resource

usage. We further exclude viewport-remapping [Regan94], image morphing [Wolberg90,

Lengyel97], and image inter- and extrapolation [Cohen-Or97, MarkMcMillan97], because we

assume 3D rendering capabilities to be available in the client, and re-rendering a meshed

imposter from a new viewpoint is of the same complexity as warping one viewport image (see

our discussion in section 6.2), while warping is less accurate.



2.3 Types of error metrics

To estimate the rendering and communication load given a certain target quality, we need

an error metric that rates the quality of simplified objects. The metric will be used to

determine which simplification method is best in which situation, to control the simplification

(pre)process and to use the optimal level of detail given the size and importance of the object

and the varying distance to the viewer. Most metrics available are designed to optimise the

resulting images for human perception. Two types can be distinguished: image-based and

geometry-based error metrics.

2.3.1 Image-based metrics

Image-based analyses have mainly been developed in the last ten years, for rendering

systems aiming at maximally realistic images. The importance of various image parts is

estimated from their contrast, color and other properties [Horvitz97, Bolin98] and this

importance is used to allocate resources. Resources can be accurately targeted by estimating

the reduced contrast sensitivity of the human system for objects in motion [Yee01], high

background illumination levels, high spatial frequencies and high contrast levels

[Ramasubramanian99].

Unfortunately, these advanced image-based analyses developed for ray tracing can not yet

be used for real-time rendering. First, these techniques are still too CPU intensive to apply in

real time, usually it takes seconds to minutes for analysis of the scene alone (e.g.,

[LindstromTurk00]), and a lot of further processing is required to get a single image or a

general simplification of the object. Furthermore, in real-time interaction the user will

probably put more attention to objects he is working with, and is less guided by the spectral

properties of the objects in his surroundings. Finally, real-time rendering requires careful

deployment of the available resources, in order to have an acceptable image ready within the

constraints set by the system and the user, and strict resource scheduling is usually not an

issue with ray-tracing techniques.

There have been a few attempts to use image-based metrics for real-time rendering.

Horvitz and Lengyel [Horvitz97] proposed to use a model of perceptual degradation caused by



rendering simple imposters that are affinely warped for the final rendering (sprites) with less

resources and a model predicting on which sprite the attention of the user is. However, in the

prototype implementation [Torborg96] every aspect of perceptual-based rendering is absent.

Lindstrom and Turk [LindstromTurk00] estimated the impact of simplification by comparing

the simplified polygon object and the original object rendered from multiple sides. Luebke

and Hallen [Luebke01] presented a model based on geometric estimations, and did a more

thorough analysis estimating changes in the image with respect to contrast and spatial

frequencies. However, this approach ignores textures. The most promising step towards using

image-based analysis for real-time rendering seems to analyse textures in a pre-processing

step and to estimate their effect in the final rendering [Dumont01].

2.3.2 Geometry-based metrics

The most basic geometric distortion measure is the Euclidean distance between the

simplified and the original surface. Usually this metric is expressed relative to the object's

size, we refer to this as relative distortion. Several variants exist, using the mean or

maximum distance, and Hausdorff, Fretchet or Minkowski distance [Veltkamp01]. But we are

not aware of results indicating which one is best for predicting task performance.

Estimating the worst case screen space errors (visual distortion) from the geometry of the

objects [Hoppe97, Lindstrom95, Luebke97, XiaVarshney96] is more optimised for human

perception and more appropriate for measuring quality in a complete scene. Cohen et al.

[CohenOlano98] also estimate texture error on the basis of geometry.

Considering a moving viewpoint, and a limited time and bandwidth to adapt the geometric

representation and to refresh the image caches and imposters, it is crucial to have a formula

for the life span of the different objects in the scene. Shade et al. [Shade96] calculate a

spherical region around the current viewing position which guarantees a minimal angular

discrepancy between the real - and imposter position of an object. With an estimated

trajectory for the moving viewing position, a lower bound on the number of frames is

calculated for which the cache will remain valid. In [Chim98] a similar life span is estimated,

but progressive meshes are used to allow a more flexible caching of the geometry. In both



approaches, however, no trade-off between imposters, IwD, LDI and simplified polygon

object is made.

With a number of polygon simplification methods, the amount of simplification attainable

is limited for objects containing many separate parts and holes. Even when objects are

clustered and holes filled, the practical gain with polygon simplification is moderate. For

instance, Garland [Garland97] shows for a human foot model containing many holes that the

accuracy reachable with a certain polygon quotum can only be doubled, in optimal cases

tripled when using clustering, as compared to normal polygon simplification.

Imposter methods seem more efficient with respect to grouping issues. Usually, a

separation is made between the nearby geometry, represented as full or simplified polygon

models, and far geometry which is represented by simple or meshed imposters. However,

current approaches have focused on only one type of imposters, and do not provide an explicit

error measure and cost function to switch between the different representations. For simple

imposters, Schaufler and Stürzlinger [Schaufler96] estimate the worst-case visual distortion

from the object's bounding box, viewing parameters and observer's change in viewing

position. Other derivations for simple imposters [Shade96, Ebbesmeyer98, Maciel95] are

similar. None of these estimations determine the optimal position to place the imposter, but

assume the imposter is placed at the center of the object. For meshed imposters, Decoret et al.

[Decoret99] derive distortions due to overlap of imposters, in order to find an optimal

assignment of objects to imposters. They adopt Schaufler's formulas, but it seems that this

will result in far too pessimistic error estimations.

2.4 Error metrics compared

There are a number of image distortions that are hard to capture with geometry based

metrics, although they can be visually disturbing.

An important point is the effect of polygon simplification on attributes attached to vertices

and faces: these have to be interpolated appropriately when the vertices and faces are shifted

around or removed [Garland98, Hoppe99]. Error measurements by Hoppe on color attributes

suggests that the attribute distortions behave in a similar way with respect to the number of



polygons as the geometry distortions. Garland [Garland98] indicates that theoretically the

distortions for texture attributes are expected to be lower than color attributes, because

minimising texture distortion requires only an additional u and v parameter to be minimized

in error, while for color attributes r, g, b and optionally transparency parameters have to be

minimised. The approach of Cohen et al [CohenOlano98] guarantees a maximum visual error

derived from geometric arguments, and seems the best answer to this problem.

For imposters, geometry based metrics fail to capture the effect of visibility gaps [Mann97,

Decoret99] and rubber-sheet distortion [Pulli97, MarkMcMillan97]. There are a number of

techniques to alleviate such gap problems: interpolating pixels to fill the gap

[MarkMcMillan97, Mark99, Mann97], warping and overlaying multiple meshed imposters or

images with depth [Decoret99, McMillan95, Pulli97], calculating the missing pixels in the

server [Mann97] or using layered depth images instead of images with depth. But again, their

impact on task performance is unknown. For our model, we will ignore these problems.

Watson et al. [Watson00, Watson01] did comparisons of both metrics with respect to task

performance. They measured the time it takes humans to name a simplified object, human

preferences and similarity ratings with the original object. They found that for drastic

simplifications [Watson00], both the metric by Bolin and Meyer [Bolin98], MSE and

maximum 3D distance are a reasonable predictor for the naming time. A later study with

moderate simplifications [Watson01] showed that Metro's mean, max and mean square error

measurements [Cignoni98] are good at predicting the similarity rating and preference.

However, all these metrics are quite bad at predicting naming times, the best being a

correlation of 30% reached both with Metro's mean, MSE and Bolin and Meyer's metric.

Concluding, it is unlikely that image-based error metrics will be the basis of error metrics

for real-time rendering in the coming years. Both metrics have only limited value for the

actual task performance. We feel that other information available at the geometry and

application level, such as task knowledge, user goals and preferences, could be used to

improve task-related predictions. Thus, we will focus on geometric distortions for our model.

In the following subsections geometric error metrics are discussed in more detail.



2.5 Error versus rendering resources

Many polygon simplification methods try to minimize geometric distortion [Schroeder92,

Rossignac93]. Accurate accumulation of the distortion from each simplification step is

potentially expensive, but for instance Garland [Garland97] made an efficient approximation

using quadrics. To model the typical errors with these simplification methods, Funkhouser

and Séquin [Funkhouser93] proposed formulas to model the relative distortion and rendering

costs as a function of the number of faces, vertices and pixels for rendering. These are

discussed in more detail in section 4.1.

Progressive meshes [Hoppe96, Eck95] are an efficient way to store a series of

simplifications of an object with decreasing relative distortion. Combining geometric error

measures with progressive meshes allows to efficiently select the proper geometry for some

viewing distance. In order to optimize for viewing direction and field of view, local

refinement of meshes is required. For terrain models, various methods were proposed

[Lindstrom96, Hoppe98, Luebke97], and gains of 100∞ on the amount of polygons and 10∞

on the amount of texture were reported [Lindstrom96]. For more arbitrary 3D models,

extending the progressive mesh to a progressive mesh tree is essential in order to enable

efficient local refinement, and this also enables handling of other geometric factors such as

surface normals and silhouette, corners and surface discontinuities [Hoppe97, XiaVarshney96,

Luebke97].

The common method to trigger the refresh of imposters is to set a threshold on their

geometric distortion [Schaufler96, Shade96]. More advanced, for each pre-computed LOD the

costs and benefits of rendering can be compared [Funkhouser93, Maciel95, Mason97].

Typically, this cost/benefit ratio is used to maximise the possible quality within a certain

rendering budget, for instance to keep a certain frame rate. Funkhouser and Séquin

[Funkhouser93] showed that in general this optimization problem is NP-complete, and they

propose a greedy algorithm to reach a point at least 50% from the optimum. Maciel and

Shirley [Maciel95] extend this model for scene graphs, but run in problems estimating the

optimum. Mason and Blake[Mason97] came with a practical approximation to solve the

resource scheduling problem for scene graphs. Aliaga and Lastra [AliagaLastra99] used a



similar benefit/cost ratio. Although their trade-off is dynamic, the different simplification

levels are fixed during pre-processing and the meshed imposters are pre-constructed based on

an octree cell subdivision.

So far, no work is known to us that directly links the visual accuracy to the rendering and

communication load, and at the same time allows to select the most appropriate simplification

method and level. Most proposed techniques require a large set of pre-computed object

representations. This seems sub-optimal for imposters as the number of possible positions will

be large compared to the number of actual viewpoints during walkthroughs, and hence there

will be a mismatch between the actual viewpoint and the viewpoints used for rendering the

imposters. Instead, our model assumes dynamically updated imposters, which assures that the

imposter exactly fits the requirements, which in turn should result in a longer lifetime of the

new imposter and a lower communication load.

3. OVERVIEW AND ASSUMPTIONS

For our model we will derive a formula that estimates the load on the communication link

for the different simplification methods. The formula will be modeled as a function of the

radius r of the object, the distance d from the viewer to the object, the maximum acceptable

visual distortion D, and the available number of polygons N.

As discussed, the model will be based on the visual distortion as estimated from the

maximum geometric distortion. We chose to use the standard and freely available Metro tool

[Cignoni98] to measure the one-sided Hausdorf distance between the reference and simplified

surface. Both the mean and maximum distance will be discussed. Relative distortion will be

expressed as a fraction of the object's bounding sphere radius and will be referred to as Drel ,

all other distortions D (with or without subscript) refer to the visual distortion in radians.

The formulas will be constructed in a number of steps:



1. Estimate the distortion of an object

We estimate the visual distortion D of a rendering of an object of radius r, which was

simplified to N polygons, where the front side of the virtual object is at distance d and the

object is viewed at an angle θ from the optimal viewpoint vopt (Figure 4). The optimal

viewpoint is especially relevant for imposters and images with depth: it is the center of

projection from which the imposter is generated. It is called optimal viewpoint because the

simplified object will be rendered undistorted when the user stands at that viewpoint.

r d
vopt

v

θ

Figure 4. The circle indicates the object with radius r.

Optimal viewpoint vopt is at distance d from the object's

surface. Current viewpoint v is at angle θ from vopt.

2. Invert the distortion formulas

Inverse formulas are constructed, to estimate the required number of polygons N given a

maximum visual distortion and the required lifetime of the simplified objects.

3. Estimate texture size

Estimate the size of the textures from the object size and distance, the maximum

acceptable visual distortion and the required lifetime.

4. Calculate communication link load

Convert the number of texture pixels and polygons into a number of bytes, and divide the

total number of bytes by the lifetime to find the communication load.

The entire model and numerous figures are available for Mathematica and in HTML and

can be found on the internet: http://graphics.tudelft.nl/~wouter/publications/model.



3.1 Assumptions

Numerous assumptions are needed to enable comparison of the effects of all parameters on

the final image quality. Many assumptions may look somewhat arbitrary or oversimplified.

We chose to keep it simple in order to keep overall complexity of the model as low as

possible. More future research is required in order to determine which simplifications need

refinement and in which cases.

Several estimations, interpolations and extrapolations will be done, considering partial

results from literature. These will be discussed where introduced. Here we discuss the more

general assumptions.

Distortion caused by latency due to head movements and viewpoint changes will be

separated from static geometric scene distortion. Strictly, latency also causes geometric

distortion, but realistic latencies introduce such tremendous distortions, even at moderate head

movement speeds, that all other distortions become negligible. Even latencies as low as 10 ms

[PasmanCG99] may cause visual distortions in the order of degrees with moderate head

movements.

Often, the distortions of frontal and side view can be estimated accurately, but it has to be

estimated for in-between positions. As it seems reasonable to assume that the distortion will

not grow rapidly when close to the front view, we use a sinusoidal function to model this.

For several calculations, the size of the virtual object matters. To simplify matters, we

assume a basically spherical object, looked at from the outside. This does not mean that we

can not handle large objects, but it means that large objects have to be split into several

smaller objects. We will discuss neither how such splits can be done, nor the impact of such

splits on performance. Instead we assume that the accuracy of the rendering of the entire scene

is reached if all parts that the scene consists of (or splitted into) are rendered with sufficient

quality.

For meshed imposters, we will ignore rubber sheet distortions, and for images with depth

we ignore visibility gaps. This will result in slightly optimistic distortion values for such

simplifications.



To account for missing back faces of imposters, simple area weighing will be used.

Ignoring missing parts seems just as unfair as using 100% distortion in case parts are lacking.

Virtual objects are assumed to be triangle-based indexed face sets. This choice was made

to allow use of the many existing tools and estimations from literature, and because it fits with

our low-power approach for wearable augmented reality [UbiCom01].

For rendering, perfect bitmap caching is assumed, although it is not clear how feasible this

is in practice. It might be necessary to insert some constant overhead factor, but this seemed

not essential for our model.

In order to model the walking behaviour of the observer, it is assumed that he will nicely

walk around virtual objects as he would walk around normal objects.

4 DISTORTION DUE TO SIMPLIFICATION

This section estimates the distortion that the various simplification methods introduce.

Formulas are derived for polygon simplification, simple and meshed imposters, images with

depth and layered depth images.

4.1 Polygon simplification

When curves are plotted for the relative distortion against the number of polygons on a log-

log scale (Figure 5), it shows that most objects have a relatively large linear part. Garland's

QSlim simplification software [QSlim99] was used to simplify the objects, and Metro

[Cignoni98] was used to calculate the distortions. These curves usually have a slant of -45˚,

which indicates that the curve behaves roughly as Drel = k / N where k is some constant. A

heuristic model in [Funkhouser93] also proposes this formula, but only for flat shaded objects,

while suggesting Drel = k / N 2 for gouraud shaded objects. However, their formulas are more

focused on appearance than on geometric distortion.
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Figure 5. Mean and maximum relative distortion. Cow from [QSlim99]. Tree and House

(Maybeck Studio) from [Artifice99]. Buddha and Bunny From [Stanford96]. Knot is a pipe

bent into a 3-dimensional lissajour figure.

This result can be given theoretical support, as follows. Figure 6 shows a cross-section of a

part of the surface, and two approximations. The rough approximation has a maximum

distortion e. The four smaller surfaces of the finer approximation of the same area have a

maximum distortion ′ e . The figure shows only a cross-section of the surface, but on a 2D

surface we now would have four sub-faces replacing the large surface.

e

s
r2β

e’

β

Figure 6. Cross-section of an object (solid line), an approximation

with 1 surface (dashed) and an approximation with 4 surfaces (2

stippled lines).

From the figure we can see that s = rcos2β , e = r − s = r − rcos2β = r(1 − cos2β ) and

′ e = r 1− cosβ( ) . We get for the distortion ratio



′ e

e
=

r 1 − cosβ( )
r 1− cos2β( )

which converges quickly to 1/4 if β → 0. Thus, if we quadruple the number of polygons

N, the distortion Drel gets four times as small. This amounts to the equation Drel = k / N .

To estimate k, Figure 5 also shows the lines Drel = k / N for a few k. When using the mean

relative distortion, k=1 seems a good estimate for surface models such as the cow and the

bunny, while k increases if the object has many fine details, is built from several smaller

objects or filled with objects instead of being only a surface, as is shown dramatically by the

tree's curve. For the maximum relative distortion, k=10 is a reasonable estimate for simple

models. The maximum distortion curves are more irregular than the mean distortion curves.

The maximum distortion curve should be used for the guaranteed-quality mechanism used in

the model presented in this paper, but we expect that the mean distortion curves will be better

indicators of the global quality of the object and therefore can be used in our model when a

minimum quality is required for the average appearance only.

To convert a relative distortion to a visual distortion, we multiply with the angle the full

object subtends in the observer's field of view, 2arctan r d( ), which gives for the visual

distortion of simplified polygon objects:

Dpolygon _simpl = 2k arctan(r d) N

4.2 Viewpoint dependent polygon simplification

The model presented here focuses on contour preservation method, as the human visual

system is highly sensitive for distortions at the contours [Koenderink84], while details in the

front face and highlights can also be suggested by adding a texture to the object. Gu et al.

[Gu99] even proposed to clip simplified renderings with a smooth contour, to improve the

subjective quality impression. Luebke and Erikson [Luebke97] mention one percent relative

distortion when only the back faces of a sphere are simplified, for a total of 3388 triangles,

while one percent silhouette error and twenty percent internal error is reached with 1950



triangles. From this, we estimate that the front view relative distortion is half the distortion of

a non-viewpoint dependent simplification with the same amount of polygons, while the side

view will have ten times higher distortion. We assume that the distortion will grow

sinusoidally between optimal (θ = 0Þ) and worst (θ = 90Þ) viewpoint: we scale up the

function 0.5 − 0.5cos2θ to start at 0.5 and to end at 10, and multiply this with Dpolygon _simpl .

And again a conversion is required from relative to visual distortion, giving for the visual

distortion of viewpoint dependent simplified polygons

Dvpt_ dep_simpl =
2k arctan r d( ) 21 −19cos2θ( )

N

for −90Þ≤ θ ≤ 90Þ.

4.3 Simple imposters

For simple imposters, the distortion depends on the placement of the imposter. The

optimal placement and the resulting distortion will be calculated.

To find the maximum visual distortion when rendering simple imposters, we take the

point pf on the front face and a point pb on the back face of the original object as far as

possible from the imposter surface (Figure 7), as parallax shifts depend on the distance from

the projection plane. The imposter is at distance dimp from the viewer, the surface of the

original object at distance d. For convenience we set ef = dimp − d and eb = d + 2r − dimp ,

where r is the object's radius.

For simplicity we assume that the center of projection, which is the optimal viewpoint vopt ,

is on a line through pf and pb , and therefore both points are projected to p' on the imposter.

Theoretically, in some cases off-axis projection is an option for creating the imposter image,

especially if the original object is essentially flat, but the discussion is out of the scope of this

paper. The observer keeps a constant distance dimp from the imposter. θ is the angle between

vopt and the actual viewpoint v, relative to the point p'. Now we can derive the visual

distortion γ:



γ f = arcsin ef sin(θ ) d f( )
γ b = arcsin eb sin θ( ) db( )
γ = max(γ f ,γ b )

vopt

pf

pb

p’

v

γf

γb

qef

eb

dimp

imposter surface

df

db

d

dimp

Figure 7. Visual distortion γ caused by movement of viewpoint

away from the optimal viewpoint.

Figure 8 shows γ f and γ b as a function of the distance to the imposter plane, for a setting

with d=5 m, θ =25˚ and r=9 m. With the imposter at five meter distance, the object's front

side would coincide with the imposter plane, and there will be no distortion in the front of the

object. At a distance of 23 m, the object's back side will coincide with the imposter plane. The

relative distortion is the maximum of the two distortions, which is minimal where γ f = γ b .

As can be seen, the optimal imposter distance is not in the center of the original object (which

would be at 14 m), but closer to the viewpoint. This is also intuitively correct, as the back side

of the object is less visible and smaller than the front face.
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Figure 8. Visual distortion introduced by simple

imposters, of a point in front and back of the object.

Solving the equation γ f = γ b gives

γ min d, r,θ( ) = if θ = 0 then 0 else

arcsin
cos θ

2 r − d + S − 2r cosθ( )
2 d2 + dr + r(r + S) − d(r + S) + 2r(2r + S)( )cosθ + 2r d + 2r( )cos2 θ

 

 
 

 

 
 

where

S = d + r( )2 − 4r 2 cosθ + 4r 2 cos2 θ

The back of the object is not displayed on the imposter, and because the imposter is flat even

looking from the side results in 100 percent visual distortion or γ = 2arctan r d( ) : the angle in

the field of view that the original object covers. But the formula we derived only calculates

the maximum distortion of objects depicted on the imposter, and does not estimate the

distortion of not rendered parts. To account for this, we add the front and back face

distortions, weighted with the area they cover on the screen, using a weighing formula

D = Dbackface 1− cos2θ( ) / 2 + Dfrontface 1+ cos2θ( ) / 2 .



We then get for the total visual distortion of simple imposters, assuming optimal placement of

the imposter:

Dsimple_imposter =
1 − cos2θ

2
2arctan

r

d
 
 

 
 +

1 + cos2θ
2

γ min d ,r,θ( )

Imposters with a simple texture map can not handle changing lighting conditions such as

moving lamps. This problem can be alleviated by using bump maps, but then it probably is

better to use an IwD, to get higher accuracy with the same transmission load.

4.4 Meshed imposters

A meshed imposter can be seen as a polygon object with only the front faces available.

Therefore the distortion in the front faces is comparable with a simplified polygon model with

double the number of polygons, but with an additional sinθ term because the texture is

optimized for the optimal viewpoint: Dfront = 2 arctan(r d)k 2N( )sinθ . Again we have no

backfaces. Area weighing as with the simple imposter gives

Dmeshed _imposter = 1 − cos2θ( )+ 1 + cos2θ( )k 2N( )sin θ( )2arctan
r

d
 
 

 
 

4.5 Images with depth

If the texture is sampled appropriately, layered depth images don't have any distortion in

the front faces. As with meshed imposters, there are rubber sheet and visibility gap problems,

but we ignore these. Again, the main source of distortion is the missing back face. Thus, we

get for the visual distortion of images with depth:

DIwD = 1− cos2θ( )arctan r d( )

The distortion probably is worse, as side faces are represented quite rough, but it is hard to

model this accurately.



4.6 Layered depth images

As discussed in the previous work section, LDIs can solve visibility gap problems in side

views. But an LDI seems not suited for rendering backfaces, given a practical average number

of pairs per pixel of 1.24 [Shade98] and the need for six LDIs to allow viewing from arbitrary

viewpoints [Oliveira99]. The side faces will still be modelled quite roughly due to limits on

the number of color+depth pairs per pixel. So we estimate the distortion equal to the distortion

of images with depth.

5 CONVERSION OF THE DISTORTION FORMULAS

5.1 Inversion of the formulas

Now that we have estimated the distortion as a function of –among others– the number of

available polygons, we can invert these formulas to find the number of required polygons

given the maximum acceptable visual distortion D (Table 1). The maximum acceptable visual

distortion can be determined by the application, user or scene designer, and it makes sense

also to stay below the maximal resolution of the user's display.

Table 1. Number of polygons required to reach visual distortion requirement D. The minimum

N is set to 4 except the last row.

Simplification method Number of polygons required N

polygon simplification 2k arctan r d( ) D 

viewpoint dependent simplification 21 −19cos2θ( )k arctan r d( ) (2D) 

meshed imposter
sinθ +sin 3θ( )k arctan(r / d)

2 D + 2arctan(r / d) −1 + cos2θ( )( )
 

  
 

  

simple imposter, LDI, IwD N =1



5.2 Integration of life time

The formulas did not yet account for the minimal lifetime of the simplified object T.

Assuming an observer walking with speed v, the observer can approach the object down to

d − vT meter if he started at distance d. If the observer can come very close to the object the

distortion will go to infinity, no matter how many polygons we spend on the object. Therefore

we set a minimum distance MinDist, and if the observer could come closer we use the

minimum distance as the basis for further distortion requirements.

The angular distance the observer can walk around the object θ needs more attention. If

the observer has time T to walk around, he can walk a distance W=vT. If the observer starts at

MinDist, we find θ = W (r + MinDist) . If the observer is closer than MinDist from the

object's surface we also use this formula, to avoid excessive refreshes. If the observer cannot

reach the surface of the object within time T, we get θ = arcsin W d + r( )( ). If the observer can

reach MinDist within time T, we need a combination of these formulas (Figure 9). We

calculate the distance to the side of the object

dside = r + d( )2 − r + MinDist( )2 = d − MinDist( ) d + MinDist + 2r( )

and we then get for the maximum θ reachable within time T:

θ =
d ≤ MinDist ⇒ W / (r + MinDist)

W > dside ⇒ arcsin dside (d + r)( )+ W − dside( ) (r + MinDist)

W ≤ dside ⇒ arcsin W / (d + r)( )

 
 
 

  



θ

r

MinDist

d

dside

Figure 9. Maximum angular distance the observer can

walk around the object θ. Thick black: the walking path.

Thick grey: boundary of the object.

5.3 Conversion to byte size

To estimate the data size of a conventional polygon model, we assume that each polygon

is a triangle with three vertices. A minimum of four vertices per model will be used. If we

assume an average indexed faceset, each vertex is reused six times. Each vertex consists of

three position coordinates, three normal coordinates and two texture coordinates. Putting it all

together, we get

bits = polygons bits_ per_ face +
3* bits_ per_ vertex

vertex_ reuse_ rate

 
 

 
 

where vertex_reuse_rate=6. Using current mesh compression techniques, such as difference

coding, quantization and entropy coding [Pajarola00, Rossignac99, Deering95], we need four

to six bits for each of the vertex and texture coordinates. Using a limited set of 4096 normal

directions [Deering95], we need only twelve bits for the normals. This gives a worst-case total

of 5*6+12=42 bits per vertex. For coding the connectivity, Rossignac [Rossignac99]

presented an algorithm compressing to two bits per triangle. Together with Pajarola

[Pajarola00], he presented a version supporting progressive meshes using 3.7 bits per triangle.

We conservatively set bits_per_face=4 as we will consider incremental transport of the

meshes. Plugging in those values gives the formula bits = 25polygons .



Polygon objects can also be transmitted incrementally. To estimate the byte size of such an

incremental format, the difference is used between the byte sizes of the equivalent non-

incremental polygon model at the current distance and the worst-case reachable distance.

5.4 Required texture size

For the estimation of the number of polygons we assumed a constant polygon size over the

entire object, which was determined using the smallest reachable distance d. For the textures

we want a more accurate estimation, as the textures are so much larger than the polygon data.

As long as the observer stays far from the object, we can simply divide the angular size of the

object by the maximum visual distortion to get the number of pixels to be spent in one

dimension on the object, and squaring this value we get the number of pixels required for the

front face of the object:

FarTextureSize(d) =
2arctan r d( )

D

 
 
  

 

2

Again, if the observer could reach the surface of the object, we would need an infinitely

high resolution, and we use MinDist instead.

If the observer comes close to the minimum distance and walks around the object, we

want to refresh only parts of the object and not the entire object. For instance, if he is walking

at a speed of 1 m/s in front of a 20 m wide building, and the life time of the simplified version

of the virtual building was planned to be three seconds, we may want a texture with only three

meters of high resolution instead of the full 20 meters. As an approximation to this behaviour,

we use the FarTextureSize equation only if the observer can not reach the minimum distance.

If the life time T is enough for the observer to reach the minimum distance MinDist, we

prepare for the worst case where the observer would go as quickly as possible to the object

and then scan its surface from this closest distance. Because we can't predict in which

direction he will scan the surface, we have to prepare a texture area following from the

distance the observer can walk along the surface of the object: dnear = W − (d − MinDist).



Actually we have to prepare more, because the observer can see more of the object than only

the pixel in front of him. To avoid difficult mathematics, we make some approximations.

When the observer can walk a distance dnear along the object's surface, he can scan

dnear (r + MinDist) radians of the surface, corresponding to an area

scanarea(dnear) = 2πr 2 sinθdθ
0

dnear / (r +MinDist )

∫ = 2πr 2 1− cos dnear (r + MinDist)( )( )

Of course the area is at most the full sphere, 4πr2 . To find the number of pixels

corresponding to this area, we have to divide this area by the area of a single pixel at the

smallest viewing distance, which is MinDist tan D( )2
, giving

scanpixels(dnear) = scanarea(dnear ) (MinDist tan D)2 .

But the observer can see more than the pixels straight under him. To account for this, we

use a slightly higher dnear as if the observer had more time to scan the surface:

vispixels(dnear ) = scanpixels dnear + d0,r( ). The extra distance d0 is chosen such that the

equation connects smoothly to the FarTextureSize equation at dnear = 0 . Solving

vispixels(0) = FarTextureSize(MinDist) gives

d0 r( )= (r + MinDist) arccos 1 −
2

π
MinDist arctan r MinDist( ) tanD

r D

 
 
  

 

2 

 
 

 

 
 

Combining all this, and plugging in the lifetime T and observer speed v, we get

TextureSize(r,v,T ) =
vT > d − MinDist: vispixels(vT − (d− < MinDist))

else: FarTextureSize(d − vT)
 
 
 

This is both including front- and back face, and is in pixels. Figure 10 illustrates the

texture size as a function of the life time and the distance to the object. The number of pixels

still has to be multiplied with the number of bytes per pixel, which varies from three (RGB),



four (RGBA) to five (RGBA+Depth). The IwD uses RGBAD. For the LDI we use 1.24

RGBAD+1 as 1.24 is a practical depth of an LDI [Shade98] and we need one extra byte per

pixel to indicate the number of layers per pixel.
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Figure 10. Uncompressed texture size as a function of the lifetime T

and the distance to the object d. Distortion D=0.004 rad, object size

r=0.5 m, v=0.7 m/s and MinDist=0.2 m.

Especially for imposter methods that need frequent refresh, there will be a strong temporal

coherence between the textures. Therefore MPEG-like video compression methods

[MPEG98, Chiariglione96] can be exploited effectively to compress the textures. Current

MPEG compression can reach compression factors up to 75:1. For the other methods – IwD,

LDI and polygon simplification methods (both incremental and non-incremental) – refresh

rates will be typically quite low and jumpy. We expect a JPEG variant will be more effective

here, with typical compression ratios of 20:1 [Cline98, Riegel98].

5.5 Communication link load

To find the average communication link load we divide the model size as found in the

previous sections by the life time T, incorporating the probability that a model refresh is really

required. The user can move in six directions (three degrees of freedom, and two directions on

each axis), but only a few of these directions actually require updating of the polygon model.

We have to refresh a polygon model (either normal or incrementally coded) only if the



observer gets closer to the model, a probability of 1/6. All other models, including the

viewpoint dependent polygon simplification, have to be refreshed also when the observer

moves around the object, a probability of 5/6.

6 RESULTS

In this section, results on the communication link load, and CPU and memory usage are

plotted and discussed.

6.1 Results on the communication link load

Figure 11 shows the results for an object size r=1 m, and a maximal acceptable visual

distortion D=1 mrad, which is approximately the size of a pixel on a 640 ∞ 480 display with a

field of view of 40˚ ∞ 35˚. MinDist is 0.2 m, the observer speed v=1 m/s and the object

complexity k=5 in all examples in this section. Incremental transport of the full polygon

objects gives on average the lowest transport costs. Thus, our model predicts that the added

costs for the larger mesh complexity are compensated by the lower refresh costs.

Without such incremental transport, simplified polygons perform worse, in that case

imposters can help save transport costs. The imposter models break down at some distance,

because the distortion due to the missing back face gets too large, and for simple imposters

also because of their flatness. The ridge in the polygon distortion model is caused by the

possibility of the observer to reach the object, making it necessary to transfer the texture of the

complete 3D model. If we aim at a lifetime of one second, this particular setting shows that a

polygon model is necessary for distances below fifteen meters, to reach the required visual

distortion. Simple imposters can be only at large distances, 50 meter and further.

For larger models the imposters are less effective. If we increase the object radius to 10 m,

the meshed imposter, IwD and LDI can be used at distances higher than 30 m, simple

imposters give too high distortions up to at least 100 m. With very short life times a meshed

imposter can be used at small distances, because the observer's speed around a large object is

relatively smaller than around a big object, but the gain compared to a simplified polygon

model is small.
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Figure 11. Average load on the communication link. Maximum distortion D=0.001, and object

size r=1 m. Incrementally transported simplified polygon objects are shown transparent to

expose underlying layers.

If this can be considered a typical situation, the communication load is not a real argument

to use imposters at large distances. However, the number of polygons in imposters is usually

much smaller than polygon objects with comparable distortion, and in case of tight polygon

budgets it is attractive to switch to simpler models as soon as possible.

Figure 12 shows what happens if we use at most 500 polygons for the simplified model.

The incremental polygon and simplified polygon methods now break down at distances

smaller than 30 m, because the distortion requirement cannot be reached with the given

amount of polygons. The viewpoint dependent simplification improves this range to down to

10 meters. In such a situation, the imposter- and LDI methods offer an advantage.
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Figure 12. As Figure 11, but now the number of polygons N is limited to 500.

Clearly, polygon-limited cases introduce situations where certain distortion targets can not

be reached. If a rendering is still required, quality has to be reduced. By accepting higher

visual distortions (D=0.1), but still require high texture quality (with D=0.001 as before), the

simplified polygon models could still be used at smaller distances (Figure 13) while the

textures at least suggest low distortions. Of course, when lower geometry distortion is

acceptable the imposters can also be used at smaller distances.
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Figure 13. As Figure 12, with lower geometric quality D=0.1 but with the same texture

quality. The incremental polygon curve was removed, and the simplified polygon

curve was made transparent, to show the other curves.

6.2 CPU and memory load

We did a similar analysis of CPU and memory load, using a complexity analysis of

currently available algorithms. But we can summarise the results without such an analysis:

1. For the imposter- and polygon models the memory required in the client is dominated

by the texture size, and thus follows directly from the estimated texture sizes.

2. The textures should be at a resolution closely matching the final projected size on the

display, if we want to have a close to 1 pixel visual distortion. Then, the load on the texture

memory (number of bytes accessed per second) is determined by the area covered by the

virtual objects. Assuming perfect caching, each pixel is read only once from texture memory,

and therefore the memory load for the various methods is different only because of the

varying number of bytes for RGB, RGBA, RGBAD and layered RGBAD pixels. For images

with depth, a hybrid, 2-stage rendering method has been developed [Shade98, Schaufler00],

but this requires storage of intermediate images and therefore gives a higher memory load.

3. To compare the CPU load involved in the rendering, it suffices to realise that the main

bulk of calculations involves the per-pixel perspective calculation. This is required both for

polygon rendering, imposters and for depth-per-pixel texture maps such as the image with



depth. Therefore the rendering loads are comparable. Some tricks can be used to approximate

perspective mapping with cheaper functions, but these tricks can be used for all methods we

discussed.

7 VALIDATION

Now we have described a model, how good is it? First, we would like to repeat that our

model is the first, possibly oversimplified attempt to model the current simplification

techniques. For instance, we already saw that the formula D = k / N does not appropriately

model non-surface models like a tree or a house containing furniture. Also, the ratio of

silhouette to interior polygons that we used was estimated very roughly using only results

from literature on a sphere. It remains to be seen whether our approximations are sufficient,

and more elaborate models have to be developed to come to a more accurate comparison.

For our validation we used a prototype system [Pasman02] that uses the model to schedule

the available resources in the client to the various virtual objects in the scene. In this system

many problems have been only partially resolved, such as latency variations, caching

problems, texture memory limitations, absence of geometry compression, and lack of texture

support for simplified polygon objects. Furthermore, there are other issues such as the

resource scheduling, taking also part of the resources. In all, it probably is dangerous to

compare performance results of the prototype system with our model. It is likely that the

theoretical model will give a more balanced estimate than measurements on a prototype

system, as it can be checked that the same criteria are rigorously applied to all available

methods in a comparable way, which is hard to see in thousands of lines of code.

However, a part of the question about validation is about how good the resulting images

look on the screen, and whether similar settings with different methods do give similar-

looking images. To answer this, some basic comparisons were done, and below some

snapshots and SNR measurements are presented. Of course, SNR is just as dubious to assess

image quality as is geometric distortion, but there is no definitive measurement to assess

image quality.



To generate a few images for comparison, simple imposters, meshed imposters and

simplified polygon objects were rendered with an equal distortion target. The cow and house

model were used (see Figure 5), because the cow is very regular and almost perfectly follows

the k=10 line, while the house behaves very irregular. The cow is relatively flat, and an

imposter giving a side view will give lower distortions than an imposter giving a front view,

when viewed from the same distance from the optimal viewpoint. Both cases are shown in the

figures. Figure 14a shows the result for D=0.02. In the simplified polygon version, many

details get lost, such as the horns of the cow and window details. Many apparently fine details

are still in the house, this is related to the fact that QSlim does not optimize for geometric

distortion. The simple imposters look very good, much better in fact than the simplified

polygon version, but this is mainly caused by lacking texture on the simplified polygon

version. The geometric distortion relevant here is a vertical foreshortening, hardly visible in

these static images. A disturbing artefact can be seen in the roof of the house in the meshed

imposter. This is caused by the grid of the underlying meshed imposter, which becomes

somewhat jumpy at the edge of the house. There is a light stripe attached to the horn of the

cow. This is because of our relatively naive way to generate the vertices for meshed imposters,

by just sampling a few pixels instead of a full check of the depths of all pixels. Therefore in

unfortunate cases a mesh vertex may be set at the far clip distance while there are much closer

pixels in one of the faces containing this vertex. In such a case part of the mesh is stretched

out towards the far clipping plane. In Figure 14b, D=0.001. With such a low distortion target,

distortions are essentially invisible.



Simplified polygon, N=100 Simplified polygon, N=2000

Simple imposter, θ=5.6˚. Simple imposter. θ=2.8˚.

Meshed imposter, θ=11.2˚. Meshed imposter, θ=5.6˚.

Figure 14a. Comparison of various simplification methods targeting at D= 0.02 (10 pixels at

the resolution of 640∞480, vertical fov 22.6˚). d=5000, r=570 (cow) and 984 (house).



Simplified polygon, N=2000.

Simplified polygon, N=2800. House
not available with max. distortion
0.001. In this figure, mean
distortion=0.001.

Simple imposter, θ=0.4˚. Simple imposter, θ=0.2˚.

Meshed imposter, θ=2.8˚. Meshed imposter, θ=1.4˚.

Figure 14b. As Figure 14a, but now D=0.001 (1 pixel at rendered resolution).

To make a further comparison of the image quality using geometric distortion, we

compared the signal to noise ratio (SNR) with the geometric distortion (Figure 15). Here we

use the mean geometric distortion, again determined with Metro [Cignoni98], instead of the

maximum distortion, as the SNR gives a kind of average over the entire image. Note that a

log-scale is used to plot the geometric distortion, again matching the log-nature of the SNR.

Judging from this figure, the mean geometric distortion has clear relation to the SNR.
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8 CONCLUSIONS

The intuitive model was affirmed by a theoretical analysis of the load on the

communication link. A first experimental validation of our model also looks promising.

Although we focused on thin-client systems, our model also applies to fat-client setups. But

for fat-client setups additional analysis may be necessary, to estimate the load on the server as

well.

If there is no polygon budget in the client and the communication load is the main factor

for considering simplification, our model suggests that a combination of incremental

transmission and compression will offer the lowest communication load. In the presence of a

tight polygon budget, a possible mechanism suggested by our analysis is to refresh the models

at a rate of one hertz, to use polygon models at distances closer than fifteen meters, meshed

imposters between fifteen and fifty meters and simple imposters at larger distances. Exact

switching distances depend on the size of the virtual object, and will in practice also be related

to the polygon budget.

In practice, the throughput of the communication link can vary drastically, especially if a

mobile link is used as in our mobile augmented reality system [UbiCom01]. The model

assumes that the separate objects are represented all by an appropriate simplification, and we

estimated that the renderings will look acceptable even in case of a temporal breakdown of the

communication link. However, it is not clear how to incorporate varying link performance in



the model, and more research is required to estimate how important this is and how to model

it.

The model as presented here involves a geometric distortion measure. It remains to be

seen whether a geometric distortion measure is a useful measure in practice, for instance to

estimate task performance. However, comparison of the geometric distortion measure with an

SNR measure showed no reason to worry about this distinction. More accurate measures are

probably highly dependent on the specific task at hand and can not be solved at the general

level of our model. Instead we suggest to propagate these issues to the application layer

[Pasman02].

Our more recent work focused on dynamic simplification of a virtual scene and resource

allocation, using the model derived in this paper. Results on this have already been published

[Pasman02].

The large textures, required as the observer comes close to the object, will pose storage,

rendering and transport problems. Splitting large textures into several smaller ones is not

trivial, as this may cause cracks on the polygon boundaries because of the texture

discontinuity [Francini98]. Systems exist to deal with large textures, for instance SGI's clip

maps [Eckel95], but it is not clear whether it is realistic to use those on a thin client, and what

happens with texture coordinates if the mesh needs to be refreshed.
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