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ABSTRACT
This paper presents a framework for handling and on-the-fly
generation of levels of detail. The application directly controls
the trade-off between the amount of resources to be used and
the accuracy of the final images. The basis for this choice is an
accuracy curve which explicates the trade-off. This curve is
calculated and updated hierarchically, which makes it
especially suited for use with a scene graph. Integration of the
framework with VRML is described. Measurements on our
prototype implementation show that target resource loads and
accuracies can adequately be reached.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation –
Viewing algori thms ; I3.6 [Computer  Graphics ] :
Methodology and Techniques –  Graphics data structures
and data types.

General Terms
Algorithms, Management, Performance.

Keywords
On-the-fly Level of Detail Generation, Scheduling, Quality,
Cost, Trade-off, Scene Graph.

1. INTRODUCTION
Appropriate levels of detail (LOD) can maximise the visual
quality of the rendering while minimising the rendering costs.
Especially in thin client systems, simple and meshed imposters
are very good in reducing the number of polygons and the
resource usage in the client, while preserving the quality of
the final images.

VRML is a convenient language to describe a virtual
scene. Unfortunately standard VRML is not very suited for
using imposters. First, it uses only the distance between the
viewpoint and the LODs to pick the appropriate LOD for
rendering. In general, this is insufficient for imposters, because

they can be used only when the user is in front of the imposter
– the distance to the imposter is probably not even very
critical. Second, the scene designer has to do a lot of effort to
get a constant final image quality. Furthermore, VRML has no
mechanism to dynamically generate the imposter, and therefore
the scene designer would have to design a large number of
imposters and put them into the scene. Finally, VRML does
not support progressive meshes, a convenient way to store
multiple resolution versions of virtual objects.

A radical approach would be to uncouple the rendering
entirely from the scenegraph, and to allow the rendering
system to introduce simplifications anywhere it thinks
appropriate, completely transparent to the application and
VRML. However, this leaves very little control to the
application and scene designer with respect to the realtime
behaviour of the system. Furthermore, current approaches in
this direction are computationally so complex that the best
they can do is to iterate towards a – hopefully sufficient –
optimum. Other systems in this direction support only simple
imposters in addition to the original polygon objects, which
is inefficient and maybe even unusable because the original
polygon objects may be too complex to render while the object
may be too close to be represented with a simple imposter.

These quality-performance trade-off issues are generally
not critical in high-quality rendering systems. However, when
the rendering system is part of a mobile system, the rendering
system becomes one of the many components competing for
scarce system resources – the battery, memory, CPU, the
wireless radio link, the video compressor, the camera, the
positioning systems (GPS, gyros) etc. The optimization
question thus stretches over the entire system, and the
optimum can not be found by looking at the graphics system
alone.

Within the UbiCom program [24] an overall quality of
service (QoS) approach was developed to enable this
propagation [29]. In this paper we describe the LOD
mechanism that we developed to fit this QoS approach, and the
way it fits into a scene graph. The paper is organised as
follows. Section 2 discusses related work. Section 3 presents
our framework for LOD scheduling, and discusses how the
framework fits within VRML. Section 4 presents some
measurements on our prototype implementation, and discusses
possible improvements.

2. RELATED WORK
Various LOD rendering methods have been proposed to
simplify complex virtual objects, such as simple imposters [1,
2], meshed imposters [3, 4], images with depth  [5, 6, 7],
layered depth images [8, 9] and simplified polygon models [32,
10, 30, 23, 31].



Simplified polygon models are a good choice to replace
nearby objects, because the observer can move around them
freely without requiring the system to refresh the model. But
for distant objects this is overly accurate, as the observer will
probably never see the back faces. If the polygon model is
simplified extremely, the simplification will become very
distorted. Instead,  simple imposters holding a picture of the
object are much better when it comes to simplifying objects to
a very low number of polygons. Meshed imposters are most
useful at moderate distances. See Figure 1. Additionally,
imposters are important to cluster or group a number of
separate objects into a single simplified representation.
Polygon clustering methods are not well-developed and
usually are limited to gap filling techniques [10].

Observer

Outside
viewing
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Viewing cone

Figure 1. Efficient way of using different simplification
methods depending on the distance to the observer.

Thus, each LOD method has its own optimal range where
it can be used, depending on the size of the object it replaces,
the distance to the observer, the observer speed, the
performance of the rendering engine, and the bandwidth
between the rendering frontend and the place where the LODs
are stored or generated. We modeled all these parameters, and
comparisons were made of the network load, rendering load
and memory load when using various simplification methods.
Figure 2 gives an impression of the results. The mathematical
model is fully exposed in earlier work [11]. This paper
describes how to map the theoretical model into deterministic
and efficient software, and integrates this model with VRML
and quality of service handling.
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Figure 2. Typical results of our mathematical model. Here
the average load on the link is plotted as a function of the
planned lifetime of simplified objects and their distance

to the user.

A few frameworks for LOD handling have been proposed
earlier. The main problem with current dynamic simplification
systems is that they support only a subset of the available
simplification methods. Most proposed systems focus on a
single simplification method. In [18] and [8], space is
partitioned hierarchically, using a k-d tree, and previously
rendered simple imposters for objects or groups of objects
within a bounding box of the k-d tree are automatically reused.
Imposters for larger bounding boxes can also be refreshed
using images from smaller bounding boxes. To increase the
lifetime of the imposters, it was proposed [19] to use a more
elaborate kind of simple imposter called layered impostors.
However, this introduces problems with visibility gaps,
similar to those in an image with depth. Lengyel and Snyder
[20] group objects considering their relative velocity,
perceptual distinctness and ratio between transparent and
opaque pixels in the simple imposter. To support this process,
they use a dynamically updated k-d tree, which also allows
their system to cope with animated geometry. Decoret et al.
[21] introduced dynamically updated meshed imposters. They
group several objects into multiple meshed imposters. The
overlap between the objects is used to steer the grouping of
objects into the meshed imposters, such that occlusion
artefacts are minimised.

There are a few general frameworks that can support any
kind of representation. Funkhouser and Sequin [22, 23] select
a combination of representations maximising the overall
cost/benefit ratio. The number of polygons, pixels and vertices
in the object are used to make an estimation of the rendering
costs and benefits of that object. Mason and Blake [28]
improved that framework, by adding support for hierarchical
scene descriptions and for clustering or grouping of objects.
Furthermore they added viewing-direction dependent
cost/benefit ratios, enabling the use of imposters. A problem
with these approaches is that their complexity is NP-complete,
and only solutions that iterate towards a near-maximum for the
cost/benefit ratio over a number of render cycles exist. Because
of this, the application has no accurate control over the cost
and benefit. Furthermore, these approaches do not incorporate
dynamically refreshed LODs. Especially if the frontend is
extremely constrained, for instance a wearable AR terminal
[24], these restrictions are unacceptable.

3. THE FRAMEWORK
Central to the proposed framework is the extension of every
node in the scene graph with an accuracy curve. This curve
describes, for that node, the resource load as a function of the
accuracy in the final image. It represents not a single point, but
the full range of possibilities, such that in the end a suitable
point can be found quickly. This accuracy curve can be
calculated for any object and group of objects in the scene
graph. For the leaf nodes, the curve is specified, estimated or
derived mathematically, and for the intermediate nodes in the
scene graph the curves of the children are combined into a new
curve (Figure 3). The application can pick the required
accuracy and/or resource load at the top node, and trigger the
use of that configuration or decide to take other actions. LODs
are generated or updated only after the application has chosen
the proper operation point.

The following sections describe the accuracy curves in
more detail, how they propagate through the scene graph, and
how VRML can be adapted to fit our framework.
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Figure 3. Propagating accuracy curves upwards through the
scene graph. In the curves horizontally the accuracy a,

vertically the amount of resources r.

3.1 Accuracy curves
An accuracy curve describes the minimal amount of resources
required to reach an accuracy. The curve is monotonically
increasing, as providing more resources should never give
lower accuracy.

Usually a geometric distortion measure for simplified
objects is calculated by dividing the maximum distance
between the original and simplified geometry by the size of the
original object. Alternatively, we propose accuracy measure
a=1/d , where d  is the usual distortion measure. This is
advantageous because for most polygon reduction methods the
geometric distortion d ≈ K r  [23, 11] where K  is some
constant depending on the object, and r  the available
resources, such as the number of polygons or vertices.
Therefore the accuracy becomes a simple linear equation
a = 1 d = 1

K r . In order to be able to match the less trivial curves
of real objects and groups of objects, we use the slightly more
general form  r = R + K ⋅a , where R  and K  are constants
depending on the object complexity, and make for the accuracy
curve a partwise linear approximation (Figure 4). Note that the
accuracy in practice never goes to infinity because curved
surfaces of real objects can only be approximated by triangles.
For simplicity we use the geometric accuracy, but probably
this can be generalised to a perceptually more precise measure.
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Figure 4. Accuracy curve for Garland's cow [13].

Horizontally the achievable accuracy a, vertically the
available resources r. This curve is so linear that it could

also be conveniently modelled with a single part .

Technically, we represent the accuracy curve C as a list of
triples (A,R,K). A is the starting point of a linear curve part.

The list is sorted by increasing A , and each A  in the list is
unique. Each triple represents a part of the curve starting at A.
If (A1 , R1 , K1 )  and (A2 , R2 , K2 )  are two subsequent triples in C,
the curve follows r = K1 ⋅a + R1 for A1 ≤ a < A2  The curve
should be monotonically increasing, so if (A1 , R1 , K1 )  and
(A2 , R2 , K2 )  a re  two subsequent  t r ip les ,  then
R2 + K2 A2 ≥ R1 + K1A2 . Note that this representation is more

powerful than just a list of discontinuity points, because our
representation allows vertical jumps. Such jumps will show
up when curves are combined.

The resource r may be a multidimensional vector, for
instance a tuple containing the load on the wireless link and
the amount of polygons in the simplified scene. We expect that
the real behaviour of those other dimensions also can be
modelled reasonably accurate with partially linear curves.
Difficulties arise from resource trade-off issues: it may be
possible to reach an equal accuracy with different amounts of
the various resources. We have ideas about how to extend our
approach for this, but this falls out of the scope of this paper.

Two kinds of accuracy can be distinguished: relative
accuracy and absolute accuracy. The relative accuracy is
expressed as a fraction of the object's size, for instance 50
means that the maximum distortion, or distance between the
original object and the simplified object, is 1/50=2% of the
object's size. The absolute accuracy expresses an angle in the
field of view, for instance 400 means that the maximum angular
distortion is 1/400 rad. The application will typically require
a minimal accuracy in screen space, while objects in the scene
graph will specify their accuracy in the viewpoint-
independent relative accuracy.

Converting from relative to absolute accuracy is
straightforward. Using the smallest distance between the
object and the observer, the angle that the object covers in the
field of view can be calculated, and multiplying this angle by
the relative distortion gives the worst-case absolute
distortion.

3.2 Propagating accuracy curves
At the primitive objects in the leaf nodes, an approximation of
the curve has to be made. For some primitives, such as the
sphere and cylinder, this curve can be derived mathematically.
For more general indexed face sets, we have either to ask the
scene programmer to give the curve for these objects, or we
have to estimate the curve. Currently we use a simple unix
shell script, using QSlim [13] for polygon simplification and
Metro [33] for estimation of geometric distortion, to calculate
the exact curves. The curve can then be approximated by
picking a few points on major knicks in the curve, while only
a start- and endpoint suffices in most cases. The estimation can
be combined efficiently with the generation of a progressive
mesh [30], allowing quick re-generation of simplified polygon
objects at runtime.

The accuracy will go to zero anyway if the viewer can
come arbitrarily close. To avoid single objects taking all
resources, a certain minimal distance will be used in cases that
the user can come too close.

Two nodes are essential for the construction of the scene
graph: the group node and the LOD node.

3.2.1 Propagating through a group node
The group node is just a container holding a number of

children nodes that all have to be rendered. To calculate the
accuracy curve of the group, we should add the resources



required for the children separately at every possible accuracy,
as follows. If (a,r1 ) ... (a,rn )  are points in the curves of the
children nodes (same a, different r), then (a,r1 + r2 +..+rn )  is a
point in the curve of the group node (Figure 5). Technically,
this can be implemented efficiently using our curve
representation.

Special attention is required if the start and/or end
accuracy of the two curves is not the same. Assume that the
curve of child 1 starts at smaller a than the curve of child 2, and
the application requests to render the scene at that small a. In
that case, we expect child 1 to render at that low accuracy,
while child 2 should render its lowest valid accuracy. The
same holds for the end points, where we expect a child to
render at its highest quality when higher is requested. Thus, it
is convenient to extend the ranges horizontally, to
accommodate the largest available values, when adding the
curves.
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Figure 5. Adding of resources is required when two objects
have to reach some accuracy. The light grey extensions of the
curves indicate which values to use for adding outside of the

valid range of the curve. See text.

3.2.2 Propagating through an LOD node.
An LOD node holds several representations for the same

object. Thus, it should select the cheapest sufficient child for
rendering. Only one of the children has to be rendered, so if
(a,r1 ) ... (a,rn )  are points in the curves of the children then
(a,min(r1 ...rn ))  is a point in the curve of the group node
(Figure 6). Again, this poses no technical problems with our
curve representation although some care is needed in case two
triples cross each other, as in Figure 6.

Now we can not extend the curves horizontally at the
high accuracy side. If child 2 is valid up to a higher accuracy
than child 1, and we request a that high accuracy, we expect
child 2 to be selected by the LOD node. However, if child 1 is
extended horizontally, and it happens to have lower resource
usage at its endpoint than child 2 has at the requested
accuracy, child 1 would be chosen instead (Figure 7).
Properly, we should not extend right sides. At the left side,
horizontal extension is proper: rendering a child with a higher
than requested accuracy is an option, if it uses less resources.
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Figure 6. Taking the minimum of two accuracy curves.
Note that curves should not be extended to the right when

taking the minimum. See text.

Technically, it is important that our choice of
representation for the curve parts makes adding and taking the
minimum efficient and avoids rounding errors. Because of our
choice of parameters, only the starting points of curves change
when taking the minimum, only the calculation of
intersections of curves has to be done somewhat careful to
avoid small 'cracks' in the curve. Rounding errors during
addition are very small as well.
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Figure 7. Extending LOD nodes horizontally to the right is
incorrect when taking the minimum.

3.3 Runtime behaviour and complexity
The accuracy of the final image is equal to its least accurate
part, so it makes no sense to increase the quality of arbitrary
parts while rendering others at a lower accuracy – unless the
application explicitly requested this. Thus, during rendering
the targeted accuracy can directly be imposed on all objects in
the scene. This restriction of all objects behaving synchronous
is enough to avoid the NP-completeness caused by traditional
scheduling approaches that consider every possible
combination of LODs.

3.4 Extended use of relative accuracy
The propagation of accuracy curves as discussed in the

previous section only holds for absolute accuracies.
Propagating a relative curve is possible only if all children
provide a relative curve. Adding a relative accuracy differs
slightly from adding an absolute accuracy, because the
diameter of the group differs from the diameter of the separate
objects. Therefore the accuracy curves of the objects to be
added have to be multiplied first, by new  diameter

old  diameter , to match the
new radius before adding them. Typically the accuracy will



become higher, because the absolute distortion stays the same
while the bounding box grows. More formally, if d1 ...dn  are the
radii of the  children, D  is the diameter of the group, and
(adi D,ri )  are points on the accuracy curves of the children
then  (a,r1 + r2 +..+rn )  is a point in the curve of the group
node.

Because absolute accuracy curves are depending on the
viewpoint, absolute curves have to be refreshed after the
observer made a significant movement. This can be done in a
top-down manner. However, regular refresh is quite inefficient.
Furthermore, absolute accuracies are calculated using the
worst-case movement predictions, and therefore are worst-case
values. Relative curves are not depending on the viewpoint.
Therefore doing the conversion from a relative to an absolute
curve as high as possible in the scene graph will improve
efficiency. Doing the conversion higher in the scene graph
also reduces the number of conversions required.

The use of relative accuracy curves is limited to the point
where viewer gets close to – or even in – the bounding box.
Therefore the best distance to do the conversion is around the
point where the distance to the group becomes smaller than the
group's bounding box. We assume these conversions are all
done in the backbone, where maximum efficiency is not
essential, so the conversion level is not very critical.

3.5 Valid range indications
Both imposters and accuracy curves are restricted in their

use to only a part of 3D space. Existing interfaces specify a
minimum distance from which a representation is valid [18, 21,
25, 26]. But in order to give more control to the application
program, a maximum distance is useful as well. Furthermore,
especially for simple and meshed imposters a direction is
required. Finally, it should be possible to test quickly
whether a sphere (all positions that a user might reach within a
certain amount of time) completely falls within the range.

To describe such parts in space, we could use a conically
shaped bounding volume (conic range) as in Figure 8. A
problem is that we must be able to take the intersection of
range indications efficiently. For instance, the valid range of a
combined distortion curve will be the intersection of the valid
ranges of the individual curves that the combined curve is
made of. Unfortunately, intersections of conic ranges will
usually not result in a conic range. Because we need concave
objects to indicate minimum distances, alternatives such as a
general convex hull [27] are not very suited either. Currently
we use the conic range and quickly fall back to simple spheres,
which are degenerate conic ranges, when taking the
intersection.

d

Figure 8a.  A conic range can indicate a minimum and
maximum to the object, as well as a maximum angular

distance from some direction vector.

ConicRange
{

field SFVec3f center 0 0 0 # <-∞,∞>, meter
field SFVec2f distance 1 10 # <0,∞>, meter
field SFVec3f direction 0 0 1
field SFFloat alpha 3.1415 # rad, <0,p]

}

Figure 8b. The ConicRange VRML node.

3.6 Integration with VRML
To bring our framework into VRML, a few new VRML nodes
have to be defined, and a few nodes have to be changed. All
objects now also have to provide a function returning the
current accuracy curve, given the transformation between the
viewpoint and the object and the required life time of the
simplified version of the object.

To accommodate the various simplification methods, we
introduce a SimpleImposter, a MeshedImposter and a
SimplifiedPolygon node. These nodes replace their children
with a single simplification.

Figure 9 shows the SimpleImposter node. The rotation of
the imposter node is updated automatically each time the
imposter texture is refreshed, and its orientation is adjusted to
optimise the expected lifetime. The size field holds the width
and height of the imposter, and is by default updated
automatically. The center fields work similarly. The center field
is required because the children of an imposter are usually not
centered around 0,0,0 while a default imposter would be. This
unbalance would require the imposter to be excessively large,
in order to cover the objects. The default orientation of the
imposter is along the xy plane, and scaling affects the imposter
in these dimensions only. If the imposter is too small, the
image will hold only part of the objects it replaces. The
MeshedImposter node is similar, and the SimplifiedPolygon
node is similar to a Group node.

SimpleImposter
{

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children [ ]
exposedField SFVec2f size 2 2
exposedField SFBool autosize true
exposedField SFVec3f center 0 0 0
exposedField SFBool autocenter true

}

Figure 9. The SimpleImposter VRML node.

The semantics of the VRML LOD node are changed
slightly. Only after checking which levels are valid and have
enough accuracy, the one with the lowest resource load is
picked.

With the proposed nodes, very specific simplification
mechanisms can be devised by the application. For instance, to
render a cylinder, using either its original geometry, a meshed
imposter or a simple imposter, we can use the following
fragment (Figure 10). A simple imposter will only be used if
the distance to the viewer is larger than 10 and below 1000.
Without range specification the behaviour of the LOD will
still be good, because of the accuracy curves.



LOD
{

level
[
DEF MyCylinder Shape { geometry Cylinder {} }
SimpleImposter { children [ USE MyCylinder ] }
MeshedImposter { children [ USE MyCylinder ] }
]
range [

ConicRange{},
ConicRange {distance 10 1000},
ConicRange{} ]

}

Figure 10. VRML2 fragment using the proposed nodes.

4. PROTOTYPE IMPLEMENTATION
Mobile Augmented Reality is an interesting concept for
offering users information on the spot. Within the UbiCom
program at Delft University a mobile augmented reality system
is being developed [24, 12] that will consist of a mobile
receiver with an augmented reality display that will receive
the rendering data over a mobile link from a base station. As
the augmented reality is to operate in perfect
alignment/registration with the real world, the latency
requirements are extremely severe.

Earlier, we presented an approach to enable low-latency
rendering on a mobile  platform [12]. With the limited CPU
power and communication bandwidth available to the mobile
unit, our prototype implementation can handle about 350
texture-mapped polygons with a maximum end-to-end latency
of 8 ms.

Our prototype implementation is distributed over three
machines. For the measurements below, the computers were all
connected with 100 Mbit/s ethernet. The first machine is the
'wearable' low-power low-latency frontend [12]. The second
machine runs the application and all the code concerning our
LOD framework except actual simplification of objects. The
third machine does all simplifications and imposter
generations.

We implemented the hierarchical LOD framework and the
VRML adaptations in our prototype system [24]. Polygon
reduction and meshed imposter optimisation is based on
Garland's QSlim software [13]. Imposter images are rendered
using the lights and the relevant part of the VRML scene. For
meshed imposters the depth mesh is generated from the z buffer
of the rendered image. We did not restrict accuracy curves to a
part of space, to shorten programming time. Instead we
regenerate all representations roughly once per second. In our
prototype implementation we mapped the resource load to the
number of polygons. This is because our low latency AR
rendering system [12] can handle approximately 350 texture-
mapped polygons, while texture memory and CPU load are less
of an issue. These optimisations have no negative effects on the
image quality, but will cause extra workload on the backbone
and wireless link. Optimal use of conic ranges and the
associated caching- and reuse-possibilities will reduce these
workloads dramatically when the observer is making non-
worst case movements or standing still.

4.1 Demo impressions
Our demo room is quite small with a usable area of about 4 by
3.5 meters. Theoretically this is too small to use meshed

imposters or simple imposters, but nevertheless we used them,
by setting the estimated maximum observer  speed to 0.1 m/s
(instead of the usual 1 m/s).

We built several demos, showing primitive objects such
as spheres and cylinders, but also large meshes such as
Garland's cow, with the various simplification methods used
at the same time (Figure 11).

In spite of the (too) close range, the imposters look very
good, so good that the switch to a simplified polygon
representation causes a dramatic drop in quality. The main
cause seems the lack of a texture map on the simplified polygon
objects. Recently, Piponi and Borshukov [34] introduced a
technique to generate the texture maps that theoretically could
be combined very well with Garland's polygon simplifier, but
we did not yet have the required manpower and tools to
generate appropriate texture maps. Theoretically, the
techniques from [Sander01] could be used, but this code is not
publicly available.

The spheres and cylinders can be generated and
transmitted fast enough. But our prototype system is not yet
able to transmit simplified versions of the cow within the
planned lifetime of 1 second, mainly because the
representations for both the original and simplified cow are in
ASCII VRML, which takes a lot of time to parse. Especially the
generated texture form a bottleneck, as a typical 256x256
RGBA texture consists of 262000 bytes, each of which has to
be converted to and from up to three ASCII digits. Typically
this takes 10 seconds, an order of magnitude slower than
planned.

4.2 Measurements
A test scenario was set up to estimate the ability of the system
to adapt to a changing situation, containing Garland's cow, 2
spheres and a cylinder placed along the sides of the room
(Figure 11). A flight path was chosen such that the viewpoint
animated closely between two spheres and a cylinder, and then
approached a cow model.

It is difficult to measure the reached accuracy directly, our
algorithms of course reach the target nearly exactly but a high
geometric accuracy does not necessarily imply a good picture.
Instead, we opted to measure the signal-to-noise ratio (SNR),
using the common formulas:

MSE =
1

N
si − f i( )2

i=1

N

∑

SNR = 10 10 log VAR MSE( )

VAR =
si − s( )2

Ni=1

N

∑ = −s 2 +
1

N
si

2

i=1

N

∑

where  s is the image using simplified objects, f is the maximum
quality image, N is the number of image bytes, which was the
image size (640 x 480) times 3 (R, G, and B component), and s
is the mean of the image bytes si . MSE is mean square error and
VAR is the variance within a frame. It is tricky to compare SNR
and geometric distortion, although there is some relevance as
for instance Watson [35] found high correlations between
geometric distortion and naming time of virtual objects.
Nevertheless, these measurements should be considered to get
an idea about the effectivity of the accuracy setting.
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Figure 11 (not to scale). In (a) the viewer is far away from the cow, which can therefore modelled with a meshed imposter. In (b)
the observer is close to the cow, but now the spheres can be represented with a simple imposter or simplified (for clarity, a

frame was put around the simple imposter, and the background of the meshed imposter was rendered dark grey).

For the first test, we set a target number of triangles of 200
(Figure 12). As can be seen this target is maintained
accurately. The first sphere is visible up to frame 5, the second
sphere is fully visible between frame 20 and 30, the cylinder
between frame 45 and 60, and the cow after frame 65. The SNR
varies a lot. The two drops to 0 dB occur when all objects are
out of the field of view and the screen is black.
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Figure 12. SNR and estimated accuracy over 100 frames.
The polygon quotum is fixed to 200. See text.

In frame 30 the second sphere is filling the field of view,
and it gives more distortion than the first sphere (frame 15)
because the system is already saving polygons for the cow we
are approaching. By the time we pass the cylinder (frame 60)
nearly all polygons are spent on the cow. The accuracy curve
indicates the guaranteed geometric  accuracy, and is steadily
going down as we get closer to the cow. The cylinder gives a
higher than predicted accuracy because our lowest quality
cylinder representation available has a higher accuracy than
required in this case. Considering these issues, the curves of
accuracy and SNR roughly match. Figure 13 shows the results
of the second test, where we aim at a constant accuracy instead

of a constant polygon usage. Here, the SNR varies between 9
to 13 dB, at the expense of up to 1200 polygons.

Concluding, the system can reach a target resource load
very accurately. The accuracy setting is reflected in the SNR,
and therefore probably also to the visual quality, but more
research is required to determine whether our accuracy measure
is sufficient in practice.
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Figure 13. SNR and polygon usage, in a fixed accuracy
scenario of 200 rad-1. See text.

5. CONCLUSION,  FUTURE WORK
We described a new framework that can handle multiple

simplification methods, and can be integrated with a scene
graph. The newly proposed accuracy curves are powerful
enough to describe the accuracy-resource load relation with
enough accuracy to be useful, while being intuitive and easy
enough to be used by scene designers and artists.

Incrementally updating the textures seems a useful option
both for simple and meshed imposters, and for simplified
polygon objects. For the imposters, regular updates are
required with relatively small viewpoint displacements, and
therefore compression methods like MPEG should be able to
reach compression factors in the order of 70. Imposter textures



generally will be small, so it seems reasonable to use a single
pixel density for the entire texture. For the polygon objects,
the viewer will be close to the object, and theoretically it is
worthwhile to vary pixel density within the texture, especially
if the object is large [11]. However, this may require the use of
advanced methods such as clipmapping [14, 15], and therefore
seems unfeasible on the typical thin-client platform we are
aiming for.

A related problem occurs when many textures need to be
refreshed at the same time. This may cause network delays and
network delays are only estimated in our prototype system.
Currently we assume a constant network delay, which adds to
the other delays. The total delay has to be accounted for in the
planned lifetime of the simplified object. Therefore, accuracy
targets may not be reached in the case of unpredicted latencies.

As all objects behave synchronous with respect to the
target accuracy, changing the target accuracy may cause many
objects to change representation. In practice, it may be
visually preferable to delay changing of objects a little while.
This may be possible by keeping part of the resources reserved
for this, but of course doing so will reduce the reached
accuracy.

There are a lot of possibilities to speed up the
simplification mechanism. Our prototype system was built to
show the principle, and was hardly optimised at all. To
optimise the system, we can implement proper caching of
objects, optimise parsing of ASCII VRML, and textures can be
compressed before being transmitted. Also we can switch to a
binary VRML format, to avoid parsing at all. To speed up
simplification, a progressive mesh can be calculated in a pre-
processing step, which can give an order of magnitude gain in
simplification time. Multiple simplification machines can be
used, to update multiple imposters in parallel.

A lot of work has been done on perceptually based LOD
handling, considering contours [31], spatial frequencies,
visual acuity and drop of acuity in the peripheral field of view
[36, 37] and contrast rates to estimate where the user is likely
to look at [36]. Some of these techniques require very fast
change of rendered LOD level, for instance [37] uses different
LODs for different head rotation speeds. A distributed
rendering system as in our prototype implementation does not
fit well with very fast changing LOD's because LOD changes
are made in the backbone and updated via a –maybe wireless–
network. More research is required to determine how well our
approach fits to perceptually based LOD handling.

Our prototype implementation has basic support for
animated objects, but with a low refresh rate, as the animation
is done only in the backend. Our low-latency frontend
currently can handle only fixed scenes, and does not support
animation. To really support animated objects at high
animation rates, our framework and the frontend need more
research. Accuracy curves will also depend on speeds of
objects, and rotating objects are particularly tricky. Fast
rotating, distant objects are a difficult case, as these do not fit
on imposters, while – depending on the rotation axis – a
polygon representation still may be overkill.

The visual appearance of simplified polygon models can
be improved dramatically by adding appropriate textures [34,
7] and bump maps [16, 17]. Such improvement is especially
needed to make a smooth transition between the imposter
models and a simplified polygon model.
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