
PREPRINT. To appear in Proceedings 21th Symposium on Information Theory

Latency layered rendering for mobile augmented reality

Wouter Pasman1 and Frederik W. Jansen1

1 Delft University of Technology, Department of Information Systems and
Technology, Mekelweg 4, 2628 CD, Delft, Netherlands

{w.pasman, f.w.jansen}@twi.tudelft.nl
http://www.ubicom.tudelft.nl/

Abstract. Augmented reality requires accurate alignment of virtual
objects with objects in the real world. This requires extremely low end-
to-end latency from tracking to display. For mobile use these
requirements are even more difficult to achieve when one considers the
unrestricted situation of a user walking around and using a wireless,
wearable unit that should be small and have low power consumption.
To meet these conflicting requirements, we propose a latency-layered
system that combines fast tracking and rendering techniques, using
approximate geometric models, with slower but more accurate
techniques. In this way very fast viewpoint estimates and image
updates can be achieved, followed by slightly slower but more correct
viewpoint estimates and image updates. We present a model to trade-
off image accuracy and model complexity with respect to the available
rendering power and memory at the mobile unit and the cost of
transferring information over a wireless link from a computer station to
the mobile unit.

1 Introduction
With augmented reality, virtual objects can be projected in overlay with the real
world. For applications such as remote maintenance, the placement of these virtual
objects is quite critical and should be accurate within an order of tenths of a degree. In
addition, if we want keep the objects at a fixed position with respect to the real world
while the viewpoint is changing, then the system should also meet strict latency
requirements, i.e. render a new image within 10 ms. These constraints are even more
difficult to achieve when we use augmented reality in a mobile situation where no
accurate tracking is possible and the wireless link itself has a considerable latency. At
the same time the mobile system should be lightweight and low power.

To meet these clashing requirements, we propose a latency-layered system that
combines fast tracking and rendering for first approximate estimates, and slower
techniques to achieve better estimates. For the position tracking, fast viewpoint
estimates are made with an inertial tracker. The estimation is kept accurate with a
lower frequency optical tracking system. For the rendering we apply a viewpoint
correction four times within the rendering and display of a frame, keeping the latency
for individual scan-lines to less than 10 ms. This allows us to render a few hundred
textured-mapped polygons within that time span. In order to render more complex

scenes, we apply several stages of scene simplification to the model, from general
simplification to viewpoint dependent simplification and the use of image imposters.

In this paper we describe our UbiCom-system for Ubiquitous Communication and
how the mobile unit carried by the user works together with a compute station at a
remote location over a wireless link. Then we describe how we meet the latency
requirements with our layered tracking and rendering system. We present an analysis
of image-based rendering and scene simplification techniques and we define a model
to calculate the trade-offs between image accuracy, rendering complexity, and the
load on the mobile link.

2 Overview of the system
The UbiCom system is an infrastructure for mobile multi-media communication,
developed at Delft University of Technology as a cooperative efford of several groups
in radio communication, image compression, graphics and distributed processing [1].
Users will wear a headset with a stereo augmented reality display connected to a
small wearable transceiver (the mobile unit). The transceiver is connected via a
wireless link to a nearby base station. Base stations are connected to other base
stations and a compute station via a backbone. The compute station offers cheap
compute power, storage space for large databases, and connections to the internet
(Figure 1). The mobile unit tries to off-load computations to the server to save the
scarce resources of the mobile unit, carefully trading off compute power for load on
the wireless link.

Base
station

Base
station

Mass storage

Compute power

Internet

Backbone Mobile unit

Fig. 1. Overview of the UbiCom system. See text

The configuration of the headset is shown in more detail in Figure 2. It contains an
optical see-through stereo display, an inertial tracker, two video cameras and a sender
and receiver for the wireless link. Dedicated hardware is available for 3D rendering,
image compression and decompression, and for tracking features in the camera
images. The wireless communication system uses a 17 GHz radio link outdoors and
infrared indoors, and is described in more detail in [2].
The compute station has a database with a detailed 3D model of the environment and
an associated set of most important features as input for the vision positioning system.

Transmission

Render Simplified
3D scene

Decompress

Compress

Analysis Tracking

Position and
orientation

Video out Graphics
Camera

Display

Fig. 2. The mobile unit.

Typical applications we have in mind are way finding (Figure 3a) and remote
maintenance (Figure 3b). Applications may also include person-to-person
communication, information services for 'info-on-the-spot', games and personal
assistants. We don't yet have a "killer app", but we anticipate that video and 3D
animation will play a key role.

(a) (b)

Fig 3. Two sample applications for the UbiCom system.

3 Latency-layered tracking and rendering system
It turns out that latency is the major constraint on the accuracy with which virtual
objects can be placed in an environment [3, 4, 5, 6] (Figure 4). Humans can rotate
their heads very fast (360˚/s [7] up to 2000˚/s [8]), and can easily detect errors of
0.25˚. Combining these extreme values leads to a latency requirement of 0.1 to 0.7
ms, several orders of magnitude under the current latencies of 3D systems. But we
expect that humans will not notice small alignment errors while moving fast, and
moreover that small alignment errors during motion will not hinder the task at hand.

For the applications we have in mind we think that a maximum alignment error of
0.5˚ at a head rotation speed of 50˚/s is acceptable, leading to a latency requirement of
10 ms. This is similar to the suggestions of other authors [9, 4, 10].

See-through
display

Real objectMisaligned
virtual object

Fig. 4. Latency-alignment relation. In this example we try to align a virtual object with a real
object, while the observer is rotating his head to the left. The virtual object has a latency and

therefore is displayed in the direction it should have been a short while ago. Therefore the real
and virtual object are not aligned anymore. The amount of error depends on the head rotation

speed and the latency.

In order to meet the latency requirement of 10 ms, we propose a latency layered
structure. This latency-layered structure can be made for the two essential
components in the critical path: the tracking and the rendering system.

The tracking system is primarily based on a vision system. A camera on the headset
captures images which are analysed for line features. These features are sent
–together with GPS data– to the backbone to be matched with a pre-selected set of
features from the data base. After the feature identification, the new view position
estimate is calculated and send back to the mobile unit, where the new viewpoint
estimate arrives about hundred milliseconds after the initial feature image was
captured. Within this time frame the movements and rotations of the headset are
sensed by inertial trackers and by integrating the measured acceleration an up-to-date
viewpoint position is calculated every few milliseconds. The orientation is tracked at
the same rate with gyroscopes. As the integration accumulates errors, the headset
position is corrected when a new accurate estimate arrives from the vision system.
See figure 5.

HeadsetBase Station/Backbone

Calculate
position from
cam image

feature
database

Capture
cam image

GPS
receiver

To display
processes

Inertial
tracker

Fig. 5. Low-latency tracking system.

For the rendering system, the latency requirements are extremely severe. Table 1
shows the usual performance of the different stages of the viewing pipeline.

Table 1. Typical latencies in the graphics pipeline. See also [6].
Lag type Description Typical lag
Tracker lag internal computations inside the tracker,

physical delays
5-20 ms

Interface lag transmitting tracker data, OS scheduling delays 10-30 ms
Image-generation lag rendering time 25-200 ms
Video sync lag lag while waiting for next video frame 10 ms
Display lag Delay from frame swap until actual display of

pixel
0-20 ms

Internal display lag some displays don't refresh all visible pixels
immediately

0-40 ms

The actual display of a rendered image already takes about 20 ms from the first
scanline at the top of the image to the last scanline at the bottom. To reduce this part
of the total latency, we divide the image into a number of segments and render just
ahead of the raster beam (Figure 6). When a quarter of the image is displayed, the
next segment is rendered. With standard graphics hardware we then can achieve a
latency of 10 ms (2 ms tracking, 4 ms rendering and 4 ms display) with a rendering
load of a few hundred texture mapped polygons
(see also [11]).

20ms

Displaying
here

Rendering here

To be cleared and rendered

Fig. 6. Overlapped rendering and display with four image segments.

To render scenes with a larger number of polygons we simplify the objects to fit
within the available 'budget'. First, complex objects are simplified to a small number
of polygons with textures in the compute station. This is done considering the
expected near-future viewpoint of the user. The simplification may go as far as to
replace complete objects by one image. The resulting scene description is sent to the
mobile unit, where it is rendered using the actual position of the user (Figure 7).

Application
databases

Network
resources

Compute
station

simplified
scene

Compute
station

Fig. 7. overview of the rendering system.

As the image imposters have only a short life time (only accurate near the initial
viewpoint), new imposter updates will have to be generated at the compute station
and sent to the mobile unit. Together with the latency-layered tracking, this gives us
the following latency-layered structure (Figure 8). The image is updated each 10 ms
after a user moves, but with only an approximate image. More accurate updates (over
the mobile link) are available only after 100 ms and 1 second.

Backbone Headset

position from camera,
GPS and prediction User

movement

Display

240Hz~10Hz~1Hz

~1s ~100ms <10ms

Position from
inertial tracker

display
list

simple
virtual
objects

complex
scene
graph

Fig. 8. Latency-layered structure of the system

4 Scene representation within the mobile unit
As discussed above, the mobile unit will hold only simplified versions of the scene. A
number of possibilities are open here. We consider simplified polygon objects,
meshed imposters, images with depth, and simple imposters. See Figure 9.

Fig. 9. Several simplifications of the cow model: in clockwise direction a simplified
 polygon object, meshed imposter, image with depth, and simple imposter.

Simplified polygon models seem a good choice to replace nearby objects, because the
observer can move around them freely without requiring the system to refresh the
model. But for distant objects this is overly accurate, as the observer will probably
never see the back faces.
Another option is to use simple imposters. For nearby objects this is not a good
choice, as the texture on the imposter would have to be updated very often because
the poster is only correct for a small region around the initial viewpoint. But for
distant objects this seems a good choice.
The meshed imposter and image with depth seem suited for the in-between cases:
they are more accurate than simple imposters and therefore can be used longer, but
they still have no back faces.

This analysis suggests the configuration of Figure 10: nearby objects are represented
with simplified polygon models, more distant objects with images with depth or
meshed imposters, and far away objects with simple imposters. The switching

distances may be closer for objects outside the viewing cone of the observer, to avoid
too much effort being put in rendering things the user is not looking at.

Observer

Nearby:
full
polygon
object

Further
away:
meshed
imposter,
image with
depth

Far away:
simple
imposter

Outside
viewing
cone:
lower
quality

Fig. 10. Intuitive way of using various objects with varying distance.

However, for deciding which representations to use for which objects in order to stay
within the limit of a few hundred polygons/imposters, we need a model that tells us
how to trade off accuracy against the memory and rendering capacity at the mobile
unit and the latency of the mobile link. We did a thorough analysis of the various
techniques, to estimate the accuracy as a function of the number of polygons and the
load they impose on the wireless link. This model is too large to discuss here, instead
we sketch our approach (Figure 11).
We started with estimating the distortion (D) in the images rendered from a model
given the distance to the object (d), the size of the object (r), the number of polygons
available (N), the desired life time of the object (T) and the number of pixels in the
texture for the object (Tex). The texture compression ratio can also be estimated from
the texture refresh pattern: if the model needs very frequent updates we can reach
MPEG-like ratios, while less frequent updates will reach lower, JPEG-like ratios.

D=f(d,r,N,T,Tex)

N=g(D,d,r,T)
Tex=h(D,d,r,T)

Model type

Texture
refresh
pattern

Texture
compression
ratio

Modelsize
(#bytes)

Link load (byte/s)

Fig. 11. Sketch of our resource usage analysis of various choices
for model representation in the mobile unit.

The next step involves inversion of the function D: we set a maximum distortion and
derive the number of polygons (N) and texture pixels (Tex) as a function of the
deviation from the initial viewpoint (which follows from the life time T). To come to
an estimation of the model size, we assume a constant number of bytes for each
polygon and divide the number of texture bytes by the expected compression ratio
(Figure 12). We can see that the imposters are very close in size, and that the polygon
model is much larger but does not grow as fast with decreasing viewing distance. All
models break down at some point: at closer distances the model cannot reach the
distortion and life time requirements anymore. The simple imposter breaks down
earlier than the other models, because it is very much confined to the initial
viewpoint. The polygon model also breaks down at some point, because we have a
limited amount of polygons and distortions will become evident anyway if the
observer can come close to the object within the life time of the object. In this case, a
near clip distance will have to be defined to avoid excessive model refresh.

0 0.2 0.4 0.6
0.8

object size r (m)

1
3

10
30

Distance d (m)

100k

10k

1k

100

10
M

od
el

 S
iz

e
(b

yt
es

)
Simplified Polygon�
Simple Imposter�
Meshed Imposter�
Image with Depth

Fig. 12. Model size as a function of the distance to the object and the size of the object.
Lifetime was set to .1 second, the maximum distortion D=0.005 rad and the polygon budget
N=1000. The model size is small because of the light distortion requirement in this example.

As the model size is a function of the chosen life time (refresh rate), we can find the
average link load by dividing the model size by its life time (Figure 13). We also
accounted for the probability that the user walks in such a direction that model refresh
is required. The meshed imposter has a slightly longer lifetime at a given maximum
distortion than a simple imposter, but essentially only a polygon model can reach the
distortion requirements at close distances. The wireless link will not form a
bottleneck, but the expected latency of 100 ms (Figure 8) strongly limits the use of
nearby imposters because, with realistic imposter life times of less than 100 ms, the
link can not provide fast enough updates from the compute station.

1
3

10 30
distance to object d (m)

0.1
0.3

1
3

lifetime T (s)

10k

100

1

L
in

k
lo

ad
 (

by
te

s/
s)

10

Simplified Polygon�
Simple Imposter�
Meshed Imposter�
Image with Depth

Fig. 13. Load on the wireless link as a function of distance to the object and the lifetime.
Settings as in Figure 12, the object's size r=1 meter.

The results of our estimation of the load on memory and CPU is straightforward: as
the number of polygons in our system will be much smaller than the number of pixels
to be put to the screen, the main CPU and memory load follows from the amount of
pixels in texture memory and on the screen. Therefore, the main load comes from the
way these pixels are stored (are they RGB, RGBA or RGBA + depth), and the amount
of per-pixel calculations (images with depth require additional per-pixel warps and
splat kernel calculations). Simple imposters, meshed imposters and polygon models
all impose very similar loads. For images with depth this depends on the rendering
method, ranging from a 33% higher CPU load for forward splatting [12] to a 60%
higher CPU load plus a 100% higher memory load for a hybrid mapping [13].
Concluding, the intuitive sketch of Figure 10 seems confirmed by our theoretical
model, although the exact boundaries and parameter settings require some refinement
of the model and some experimental testing.

5 Conclusions
We discussed our latency-layered approach to meet the high requirements for mobile
augmented reality, and we sketched an approach for deciding which model
representations are appropriate for the mobile unit. The presented analysis suggests
that simple imposters are appropriate for distant objects, meshed imposters can extend
their life slightly, and that polygon models are required for nearby objects.
Our near-future work will be the integration of this approach into our demonstrator
system (see figure 14). Longer term research will be on scene simplification issues
related to incremental texture updating, and its close relation to the video compression
and decompression system.

Fig. 14. Prototype system.

References
[1] Deprettere, E. (1999). Ubiquitous Communications:Aiming at a new generation
systems and applications for personal communication. Available Internet:
http://www.ubicom.tudelft.nl/.
[2] Pouwelse, J., Langendoen, K., & Sips, H. (1999). A Feasible Low-Power
Augmented-Reality Terminal. 2nd IEEE and ACM Int. Workshop on Augmented
Reality (San Francisco), 55-63.
[3] Azuma, R. T. (1997). Registration errors in augmented reality. Available Internet:
http://epsilon.cs.unc.edu/~azuma/azuma_AR.html.
[4] Ellis, S. R., & Adelstein, B. D. (1997). Visual performance and fatigue in see-
through head-mounted displays. Available Internet: http://duchamp.arc.nasa.gov/
research/seethru_summary.html.
[5] Olano, M., Cohen, J., Mine, M., & Bishop, G. (1995). Combatting rendering
latency. Proceedings of the 1995 symposium on interactive 3D graphics (Monterey,
CA, April 9-12), 19-24 and 204.
[6] Holloway, R. L. (1997). Registration error analysis for augmented reality.
Presence, 6 (4), 413-432.
[7] List, U. (1983). Nonlinear prediction of head movements for helmet-mounted
displays. U.S. Air force Human Resources Laboratory, Technical paper AFHRL-TP-
83-45, December.
[8] Aliaga, D. G. (1997). Virtual objects in the real world. Commun. ACM 40, 3
(Mar), 49-54.
[9] Azuma, R. (1993). Tracking Requirements for Augmented Reality.
Communications of the ACM, 36 (7): 50-51. Available Internet: www.cs.unc.edu/
~azuma/cacm.html.
[10] Poot, H. J. G. de (1995). Monocular perception of motion in depth. Unpublished
doctoral dissertation, Faculty of Biology, University of Utrecht, Utrecht, The
Netherlands.
[11] Pasman, W., Schaaf, A. van der, Lagendijk, R. L., & Jansen, F. W. (1999).
Accurate overlaying for mobile augmented reality. To appear in Computers &
Graphics, 23 (6).
[12] Gortler, S. J., He, L., & Cohen, M. F. (1997). Microsoft technical report MSTR-
TR-97-09. Available Internet: http://www.research.microsoft.com/~cohen.

[13] Shade, J., Gortler, S., He, L., & Szeliski, R. (1998). Layered depth images.
Proceedings of the 25th annual conference on Computer Graphics (SIGGRAPH'98),
231- 242.

