
Multi-attribute Preference Logic

Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

K.V.Hindriks@tudelft.nl, Wietske.Visser@tudelft.nl,
C.M.Jonker@tudelft.nl

Abstract. Preferences for objects are commonly derived from ranked sets of
properties or multiple attributes associated with these objects. There are several
options or strategies to qualitatively derive a preference for one object over an-
other from a property ranking. We introduce a modal logic, called multi-attribute
preference logic, that provides a language for expressing such strategies. The
logic provides the means to represent and reason about qualitative multi-attribute
preferences and to derive object preferences from property rankings. The main
result of the paper is a proof that various well-known preference orderings can be
defined in multi-attribute preference logic.

1 Introduction

Preferences may be associated with various entities such as states of affairs, properties,
objects and outcomes in e.g. games. Our main concern here are object preferences. A
natural approach to obtain preferences about objects is to start with a set of proper-
ties of these objects and derive preferences from a ranking of these properties, where
the ranking indicates the relative importance or priority of each of these properties.
This approach to obtain preferences is typical in multi-attribute decision theory, see e.g.
Keeney and Raiffa [10]. Multi-attribute decision theory provides a quantitative theory
that derives object preferences from utility values assigned to outcomes which are de-
rived from numeric weights associated with properties or attributes of objects. As it is
difficult to obtain such quantitative utility values and weights, however, several qualita-
tive approaches have been proposed instead, see e.g. [2,4,5,6,11]. There is also exten-
sive literature on preference logic following the seminal work of Von Wright [12,9], but
such logics are not specifically suited for the multi-attribute case. To illustrate what we
are after, we first present a motivating example that is used throughout the paper.

Example 1. Suppose we want to buy a house. The properties that we find important are
that we can afford the house, that it is close to our work, and that it is large, in that order.
Consider three houses, house1, house2 and house3, whose properties are listed in Figure
1, which we have to order according to our preferences. It seems clear that we would
prefer house1 over the other two, because it has two of the most important properties,
while both other houses only have one of these properties. But what about the relative
preference of house2 and house3? house3 has two out of three of the relevant properties
where house2 has only one. If the property that house2 has is considered more important
than both properties of house3, house2 would be preferred over house3.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 181–195, 2012.
© Springer-Verlag Berlin Heidelberg 2012

182 K.V. Hindriks, W. Visser, and C.M. Jonker

⊺

⊺⊺

⊺

⊺

�

�

�

�

affordable closeToWork large

house1

house2

house3

≻ ≻

Fig. 1. Properties of three houses

Key to a logic of multi-attribute preferences is the representation of property rank-
ings. Encodings of property rankings have been explored in Coste-Marquis et al. [6]
where they are called goal bases, and in Brewka [4] where they are called ranked knowl-
edge bases. Such ranked goals are binary, and in this paper we also consider desired
attributes that are binary (as opposed to numeric or ordinal ones). Coste-Marquis et al.
and Brewka moreover discuss various options, or strategies, for deriving object prefer-
ences from a property ranking. The preference orderings thus obtained are not expressed
in a logic, however. Brewka et al. [5] propose a non-monotonic logic called qualitative
choice logic to reason about multi-attribute preferences. An alternative approach to-
wards a logic of multi-attribute preferences is presented in Liu [11] where property
rankings called priority sequences are encoded in first-order logic. Both approaches are
based on one particular strategy, namely lexicographic ordering, and cannot be used to
reason about preference orderings.

In this paper a generic logic of qualitative multi-attribute preferences is proposed in
which property rankings and associated strategies for deriving object preferences from
such rankings can be defined. In Section 2 the syntax and semantics of multi-attribute
preference logic is introduced. Section 3 shows how various strategies to obtain object
preferences from a property ranking can be defined in the logic. Section 4 presents the
main result of the paper and shows that property rankings encoded as ranked knowledge
bases and a number of related strategies to obtain preference orderings can be equiva-
lently translated into multi-attribute preference logic. Section 5 concludes the paper.

2 Multi-attribute Preference Logic

2.1 Syntax and Semantics

The logic of multi-attribute preferences that we introduce here is an extension of the
modal binary preference logic presented in [7]. This logic is a propositional modal
logic with a modal operator ◻≤ϕ , and its dual ◇≤ϕ . Here ◻≤ϕ expresses that ϕ is true
in all states that are at least as good as the current state. Binary preference relations
over formulae are subsequently defined. One of the more natural binary preference
statements is ϕ <∀∀ ψ which expresses that any state where ψ is true is strictly better

Multi-attribute Preference Logic 183

than any state where ϕ is true. That is, whenever ϕ is the case, ψ is preferred, and
never vice versa. By adding a global modality U to the language, the binary preference
operator <∀∀ can be defined by U(ψ →◻≤¬ϕ), when it is assumed that the underlying
order on worlds or states has been completely specified, i.e. is total.

Multi-attribute preference logic adds two operators to binary preference logic. First,
multi-attribute preference logic, as in hybrid logic [1] adds names for objects to the
language by adding nullary modal operators i, j to the language. The semantics of the
operators introduced here, however, differs from the standard semantics of hybrid logic.
Here i, j are used as names for objects which semantically are more complex entities
than the usual worlds of modal semantics. In order to avoid confusion, we will refer to
i, j as object names below. This language extension allows us to talk about objects and
associated preferences explicitly.

Second, the logic introduces a new modal operator ◻≠. The language of multi-
attribute preference logic consists of four unary modal operators. Instead of the single
operator ◻≤ it is more convenient to introduce the two operators ◻< and ◻=: informally,
◻<ϕ expresses that at all worlds that are ranked higher than the current one ϕ is true,
whereas ◻=ϕ expresses that at all worlds that are equally ranked to the current one ϕ is
true. The modal operator ◻≠ is introduced to inspect worlds that are not ranked equally
to the current one.

Definition 1. (Language) Let At be a set of propositional atoms with typical element
p and Nom be a set of names, with typical elements i, j. The language Lpref is defined
as follows:

ϕ ∈ Lpref ∶∶= p ∣ i ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ◻=ϕ ∣ ◻≠ϕ ∣ ◻<ϕ ∣Uϕ

Disjunction ∨, implication →, and bi-implication↔ are defined as the usual abbrevia-
tions.◇<ϕ ,◇=,◇≠ are abbreviations for ¬◻<¬ϕ , ¬◻=¬ϕ , and ¬◻≠ ¬ϕ . ◻≤ϕ is short
for ◻<ϕ ∨◻=ϕ and ◇≤ϕ is its dual. The dual of the global modal operator, Eϕ , is de-
fined as ¬U¬ϕ . We also write Uiϕ for U(i → ϕ) and Eiϕ for E(i∧ϕ) for i ∈ Nom.
Finally, the set of purely propositional formulae is denoted by L0 and consists of all
formulae without any occurrences of modal operators or names i ∈Nom. ϕ ∈ L0 is also
called an objective formula.

The basic concepts in the semantics for multi-attribute preference logic are objects
and properties those objects may have. Properties are naturally represented by sets of
worlds. As we want to use properties to classify the ranking of objects, properties are
ordered in correspondence with their relative importance; such an order is called a prop-
erty ranking here. To order properties, i.e. sets of worlds, it is required that properties
are disjoint sets of worlds. Property rankings will be derived from an order on worlds
below.

Objects are also identified with particular sets of worlds. The idea is that the proper-
ties (in the sense of the previous paragraph) of an object can be derived from the worlds
which define the object. To ensure that objects are coherent, that is have a uniquely de-
fined set of properties, the worlds that define the object need to be copies of each other,
which means that these worlds need to assign the same truth values to propositional
atoms. Objects are identified with equivalence classes of worlds with respect to a truth
assignment.

184 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 2. (Object) Let W be a set of worlds and V be a mapping of W to truth
assignments 2At . An object is an equivalence class on W with respect to V . The set OV

denotes the set of all objects defined by W and V and is formally defined by:

OV = {[w]V ∣w ∈W}

where [w]V = {v ∈W ∣V(w) =V(v)}. Whenever V is clear from the context, we drop the
subscript V . As an object o is the equivalence class of a world w with respect to V , we
also say that world w identifies object o.

Definition 3. (Model) A multi-attribute preference model M is a tuple ⟨W,≾,V,N⟩
where W is a set of worlds with typical elements u,v,w, ≾ is a total pre-order (i.e. a
reflexive, transitive and total relation) on W, V is a valuation function mapping worlds
in W onto truth assignments in 2At , and N is a naming function. The strict subrelation
≺ of ≾ is defined by: v ≺w ∶= v ≾w & w /≾ v. We write v ∼w whenever v ≾w and w ≾ v.

Although the strict order ≺ derived from ≾ indicates a ranking of worlds where v ≺ w
means that w is ranked higher than v, we do not say that w is preferred over v, because
we want to reserve this terminology for talking about objects. A preference between
objects is derived from the ranking ≾ over worlds. The naming function N maps names
i to objects o.

The truth definition for propositional atoms and Boolean operators is standard. Given
a modelM= ⟨W,≾,V,N⟩, the semantics of names i ∈ Nom is provided by the naming
function N. The truth definitions for most modal operators are also standard definitions
using the associated accessibility relations for these operators. The semantic clause for
◻= is defined by means of the relation ∼, which is derived from the order ≾. Similarly, the
semantic clause for ◻< is provided by means of the strict order ≺. The global operator
U simply inspects all worlds in a model.

The truth definition for ◻≠ is not directly defined in terms of a given relation on
W . It inspects all worlds that (i) are not ranked equally as the current one, and (ii) are
not copies of worlds that are ranked equally as the current one. The motivation for this
definition will become clear in Section 2.2 when clusters are introduced.

Definition 4. (Truth Definition) LetM= ⟨W,≾,V,N⟩ be an MPL model and w ∈W a
world. The truth of a formula ϕ ∈ Lpref inM at w is defined by:
M,w ⊧ p ⇔ p ∈V(w)
M,w ⊧ i ⇔ w ∈N(i)
M,w ⊧ ¬ϕ ⇔M,w /⊧ ϕ
M,w ⊧ ϕ ∧ψ ⇔M,w ⊧ ϕ &M,w ⊧ψ
M,w ⊧ ◻=ϕ ⇔ ∀v ∶w ∼ v ⇒ M,v ⊧ ϕ
M,w ⊧ ◻≠ϕ ⇔ ∀u ∈ ⋃{[v]V ∣w ∼ v} ∶M,u ⊧ ϕ
M,w ⊧ ◻<ϕ ⇔ ∀v ∶w ≺ v ⇒ M,v ⊧ ϕ
M,w ⊧Uϕ ⇔ ∀v ∶M,v ⊧ ϕ

A name i ∈Nom refers to an object o and, semantically, is true at a world w that identifies
the object o, i.e. w ∈ o. A name thus is a special kind of operator that is true in all worlds
that identify a certain object, and false in all other worlds. We can express that an object

Multi-attribute Preference Logic 185

i has a property ϕ by Eiϕ = E(i∧ϕ). As we have E(i) as a validity and the worlds
that identify the corresponding object o are copies of each other, we have Eiϕ ↔Uiϕ
for objective ϕ . This shows that an object is coherent in the sense that an object has a
consistent set of objective properties and can be uniquely identified by this set.

The language also allows us to express properties that concern comparison of objects.
For example, U(i→◇< j) expresses that for every property of object i object j has a
property that is strictly better. The formula E(j∧¬◇≤ i) expresses that object j has a
property that object i cannot match, i.e. i has no property that is strictly better than this
property of j. We have E(j∧¬◇≤ i)→U(i→◇< j) in multi-attribute preference logic.
This validity is based on the assumption that the pre-order in models for Lpref is total.

Recall that the binary preference operator ϕ <∀∀ ψ can be defined as U(ψ →◻≤¬ϕ).
Using <∀∀ it is possible to define property rankings and express that a property ψ is
ranked higher than property ϕ . Using the truth definitions for Uϕ , ◻=ϕ and ◻<ϕ and
the definition of ◻≤ϕ as ◻=ϕ ∧◻<ϕ , it can be shown that ϕ <∀∀ ψ has the following
truth definition:

M,w ⊧ ϕ <∀∀ ψ ⇔∀u,v ∶M,u ⊧ ϕ &M,v ⊧ ψ⇒ u ≺ v

The intuitive reading of ϕ <∀∀ ψ is that every ψ-state is ranked higher than every ϕ-
state (cf. [7]). Returning to the comparison of objects again, i<∀∀ j expresses that object
j is preferred over i. The preference expressed in this way is a very strong kind of pref-
erence, however. It requires that all of object j’s relevant properties are considered more
important than objects i’s properties, which corresponds with the definition of i<∀∀ j by
U(j→◻≤¬i). In contrast, multi-attribute preference logic is able to specify principles
that allow to derive preferences over objects from their properties in a weaker sense. It
enables, for example, to specify orderings where object j is preferred over object i even
when object i has at least one property that is considered more important than a property
that object j has (compare e.g. object c and f in Figure 2). The logic thus facilitates the
specification of different ordering strategies, and, given such a specification, provides
the means to derive a preference of one object over another from a property ranking and
an additional specification of the objects’ properties.

Proposition 1 supports our claim that multi-attribute preference logic extends binary
preference logic as all listed axioms of this logic are valid in multi-attribute preference
logic as well (cf. [7], p. 66). We have listed only those axioms that can straightfor-
wardly be expressed without the need to introduce additional definitions of other binary
preference operators; all of the remaining axioms are valid as well in multi-attribute
preference logic when such definitions are added. Below we use that ∧ and ∨ bind their
arguments stronger than→ to be able to remove some brackets.

Proposition 1. We have the following validities:
1. ⊧ Eiϕ↔Uiϕ for ϕ ∈ L0.
2. ⊧ ϕ <∀∀ ψ ∧U(ξ →ψ) → ϕ <∀∀ ξ
3. ⊧ ϕ <∀∀ ψ ∧U(ξ → ϕ) → ξ <∀∀ ψ
4. ⊧ ϕ <∀∀ ψ ∧ψ <∀∀ ξ ∧Eξ → ϕ <∀∀ ξ
5. ⊧U¬ϕ ∨U¬ψ → ϕ <∀∀ ψ
6. ⊧ ϕ <∀∀ ψ →U(ϕ <∀∀ ψ)

186 K.V. Hindriks, W. Visser, and C.M. Jonker

What multi-attribute preference logic adds to binary preference logic are names for
objects, and most importantly, the ◻≠ operator that allows us to define clusters (see
Section 2.2) that represent desirable attributes. All of the modal operators ◻=,◻<,◻≠

and U are normal modal operators and satisfy the K axiom. In addition, we prove some
properties of the ◻= and ◻≠ operators (some of the more obvious axioms have not been
listed below). Proposition 2.3 shows that multi-attribute preference logic is related to
the logic of only knowing, see [8].

Proposition 2. We have:
1. ⊧ ◻=◻≠ϕ↔◻≠ϕ
2. ⊧ ◻=◻<ϕ↔◻<ϕ
3. ⊧ ◻=ϕ →¬◻≠ϕ where ¬ϕ ∈ L0 is consistent

Proof. We prove item 3. Suppose ◻=ϕ is true at world w. Then ϕ is true in all worlds
v ∼ w. Since the truth of objective formulae is the same within an object, ϕ is also
true in every world u ∈ {[v]V ∣ w ∼ v}. Since ¬ϕ is a consistent objective formula and
all valuations are present in the model, ¬ϕ must be true in some world in the model.
So there must be some world in {[v]V ∣w ∼ v} that satisfies ¬ϕ , so we have ¬◻≠ ϕ at
world w.

2.2 Clusters

The total pre-order ≾ in a multi-attribute preference model induces a strict linear order
on sets of worlds, which we call clusters. Formally, a cluster is an equivalence class
induced by ≾. Intuitively, such clusters represent the properties or attributes considered
relevant for deriving object preferences. The order on clusters induced by ≾ represents
a property ranking, i.e. the relative importance of one property compared to another.
The relation between objects and properties may now be clarified as follows. The idea
is that if an object has a particular property it should be represented within the cluster of
worlds that represents the property. Technically, this is realized by making sure that (at
least) one of the copies of a world that identifies the object is an element of the cluster
that represents the property. The worlds that identify an object act as representatives
for the object within a certain cluster and thus indicate that the object has that property.
As clusters are disjoint and objects may have multiple properties, this also explains the
need for introducing copies of worlds.

Definition 5. (Cluster) Let ≾ be a total pre-order on W. A cluster c is an equivalence
class induced by ≾, i.e. c = [w]≾ = {v ∣w ∼ v} for some w ∈W.

Example 2. The relation between clusters (properties) and sets of copies (objects) is vi-
sualized in Figure 2 (this is a model of the theory in Example 4). The ellipses (columns)
represent the clusters or properties and the boxes (rows) represent objects. Objects in
this case are supposed to be houses. For example, the house labelled b consists of two
worlds, w4 and w5. As these worlds are part of the same object, they must be copies of
each other. One of these worlds, w4, is also part of the cluster representing the property
of being affordable. This means that house b is affordable, as affordable is true at w4

Multi-attribute Preference Logic 187

≻ ≻ ≻

a

b

c

d

e

f

g

h

C(affordable) C(closeToWork) C(large) C(¬(affordable ∨

closeToWork ∨ large))

w1 w2 w3

w4 w5

w6 w7

w8

w9 w10

w11

w12

w13

Fig. 2. Visualization of an MPL model

(and thus also at w5). Similarly, it follows that house b is close to work, a property that
is true at w5 (and thus at w4). As there is no world that is part of object b as well as in the
cluster representing the property large, house b is not large. The ranking of the proper-
ties is indicated by the ≺ symbol: property affordable is more important than close to
work which in turn is more important than large. As a result, in any natural preference
ordering based on this ranking one would expect house b to be preferred over house c.

The modality ◻= can be used to express a property of a cluster. For example, E◻=ϕ
expresses that there is a cluster where ϕ is true everywhere. ◻=ϕ expresses that at least
ϕ is true in the cluster. In Figure 2, for example, in the third cluster we have that ◻=large
is true. This means that every object that is represented by a world in this cluster is large.
But we also want every object that is large to be represented in the cluster. To specify
this, we use the modality ◻≠. We can now explain why simply defining the truth of ◻≠ϕ
in terms of truth of ϕ in all worlds that are not equally ranked to the current one does not
work. The point is that there may be copies v of worlds w that have a different ranking
than world w. As copies have the same truth assignment, at such copies a propositional
formula ϕ would be assigned the same truth value. This is illustrated in Figure 3, where
large is true in all worlds in the shaded area. The key observation here is that worlds of
a particular ranking identify a set of objects, i.e. copies of these worlds which must be
part of these objects (by Definition 2 of an object). This is why ◻≠ϕ evaluates ϕ at all
objects, or, more precisely, the worlds that define these objects, that are not identified
by any of the worlds that have the same ranking as the current one.

By combining both operators we are able to characterize a cluster. For the third
cluster in Figure 2, we have that ◻=large∧◻≠¬large where large exactly characterizes
the cluster. The characterization of a cluster by ϕ is abbreviated as Cϕ , and defined by:

Cϕ ∶∶= ◻=ϕ ∧◻≠¬ϕ

188 K.V. Hindriks, W. Visser, and C.M. Jonker

≻ ≻ ≻

a

b

c

d

e

f

g

h

C(affordable) C(closeToWork) C(large) C(¬(affordable ∨

closeToWork ∨ large))

w1 w2 w3

w4 w5

w6 w7

w8

w9 w10

w11

w12

w13

Fig. 3. Visualization of an MPL model. All worlds where large is true are in the shaded section.

ϕ is true for all objects identified by (worlds in) the cluster and not true in all worlds that
identify other objects. As an object may consist of several copies to represent that it has
various properties represented by different clusters, copies of such worlds outside the
cluster need to be excluded in the evaluation of ¬ϕ which explains the truth condition
for ◻≠.

Proposition 3 shows that properties and objects are related in such a way that object
preferences can be derived. The first item of the proposition states that if there is an
object that has property ϕ and the current world identifies a cluster characterized by ϕ ,
then within the cluster there is a world that is named i, i.e. identifies the object i. The
second item states that the converse is true for an object that does not satisfy a property
ϕ that characterizes a cluster. That is, if object i does not satisfy ϕ and the current world
identifies a cluster characterized by ϕ , then no world that identifies the object labelled i
is part of that cluster. The third item generalizes the first item. It states that if there is a
cluster characterized by ϕ , and there is an object named i that satisfies ϕ , then there is
an i-world in that cluster. The last item states that when a world satisfies C(ϕ), then all
worlds within the same cluster satisfy C(ϕ).

Proposition 3. We have:
1. ⊧C(ϕ)∧Eiϕ →◇=i
2. ⊧C(ϕ)∧¬Eiϕ →¬◇= i
3. ⊧ EC(ϕ)∧Eiϕ → EiC(ϕ)
4. ⊧C(ϕ) → ◻=C(ϕ)

Proof. We prove item 1. SupposeM,w ⊧C(ϕ)∧Eiϕ . This means thatM,w ⊧ ◻≠¬ϕ .
By the truth definition for ◻≠, this is equivalent to ∀u ∈ ⋃{[v]V ∣w ∼ v} ∶M,u ⊧¬ϕ . By
the definition of Eiϕ we must also have a world u′ such thatM,u′ ⊧ i∧ϕ . This means
that we cannot have u′ ∈⋃{[v]V ∣w ∼ v} and we have that u′ ∈⋃{[v]V ∣w∼ v}. It follows

Multi-attribute Preference Logic 189

that u′ ∈ [v]V for some v ∼w; as u′ must be a copy of v this means that we haveM,v⊧ i
and, by the truth definition for◇=, we haveM,w ⊧◇=i.

The operator C provides exactly what we need to define property rankings. Se-
mantically, we have already seen that the pre-order ≾ induces a strict linear order on
clusters. The formula Cϕ allows us to express that a cluster is characterized by a for-
mula ϕ . Using this operator and the binary preference operator <∀∀ we can express
that property ψ (represented by a cluster) is ranked higher than another property ϕ
(represented by another cluster) by Cϕ <∀∀ Cψ . For example, in Figure 2, we have
C(large) <∀∀ C(closeToWork) <∀∀ C(affordable). By combining this with specifica-
tions of particular preferences orderings and statements that an object has a particular
property (cf. Proposition 3), this will allow the derivation of object preferences from a
property ranking.

3 Preference Orderings

In this Section, we show how to use multi-attribute preference logic to define multi-
attribute preference orderings derived from property rankings. Coste-Marquis et al. [6]
describe three frequent orderings based on prioritized goals: best-out, discrimin and
leximin ordering. Brewka [4] defines a preference language in which different basic
preference orderings can be combined and identifies four ‘fundamental strategies’ for
deriving preferences from what he calls a ranked knowledge base: ⊺, κ , ⊆ and #. As
best-out is the same as κ , discrimin is ⊆, and leximin is #, we will base the remainder
of our discussion on Brewka [4].

We first informally introduce these orderings and then present definitions for each of
them in the logic. Section 4 presents the definitions of [4] and a proof that the defini-
tions in multi-attribute preference logic match those provided in [4]. The advantage of
defining preference orderings in a logic instead of providing set-theoretical definitions
is that it formalizes the reasoning about object preferences. From a practical point of
view, the logic allows us to provide rigorous formal proofs for object preferences de-
rived from property rankings. From a theoretical point of view, it provides the tools to
reason about preference orderings and allows, for example, to prove that whenever an
object is preferred over another by the ⊺ strategy it also is preferred by the # strategy
(see Proposition 4 below).

The two orderings ⊆ and # first consider the most important property. If some ob-
ject has that property and another does not, then the first is preferred over the second.
So in the example, both house1 and house2 would be preferred over house3. If two
houses both have the property or if neither of them has it, the next property is consid-
ered. house1 and house2 are both affordable, but house1 is close to work and house2 is
not, so house1 would be preferred over house2. Note that although house3 satisfies two
properties and house house2 only satisfies one property, house2 is still preferred over
house3 because the single property of house2 is considered more important than both
properties of house3. The ⊆ and # orderings only differ if multiple properties are equally
important. As we will make the assumption that no two properties can have the same
importance, we will not discuss the difference and only refer to the # ordering in the
following.

190 K.V. Hindriks, W. Visser, and C.M. Jonker

The ⊺ ordering looks at the highest ranked or most important property that is sat-
isfied. If that property of one object is ranked higher than that of another object, then
the first object is preferred over the second. If those properties are equally ranked, then
both objects are equally preferred. In our running example, house1 and house2 are both
preferred over house3, since the property ranked highest that is satisfied by both house1

and house2 is affordable, and this property is ranked higher than the highest ranked
property satisfied by house3, i.e. closeToWork. Since the most important property satis-
fied by house1 is the same as the most important property satisfied by house2, house1

and house2 are equally preferred.
The κ ordering looks at the most important property that is not satisfied. If that

property of one object is less important than the property of another object, then the
first object is preferred over the second. If those properties are equally important, then
both objects are equally preferred. In our running example, the highest ranked property
that is not satisfied by house1 is large, that of house2 is closeToWork and that of house3

is affordable. Since large is the least important property of these properties, house1

is preferred over both other houses. As closeToWork is less important than affordable,
house2 is preferred over house3.

All preference orderings introduced can be defined in multi-attribute preference logic.
We use pre f s

∼(i, j) to stand for: object i is weakly preferred over object j according to
strategy s, where s is one of ⊺, κ and #; pre f s(i, j) is used to express strict preference.

Definition 6. (Preference Orderings) pre f κ(i, j), pre f κ
∼ (i, j), pre f #(i, j), pre f #

∼(i, j),
pre f ⊺(i, j) and pre f ⊺∼ (i, j) are defined by:

pre f ⊺(i, j)∶∶=E(i∧¬◇= j∧◻<(¬i∧¬ j))
pre f ⊺∼ (i, j)∶∶=pre f ⊺(i, j)∨

U((◇=i∧◻<¬i)↔ (◇= j∧◻<¬ j))
pre f κ(i, j)∶∶=E(i∧¬◇= j∧◻<(◇=i∧◇= j))
pre f κ

∼ (i, j)∶∶=pre f κ(i, j)∨
U((¬◇= i∧◻<◇= i)↔ (¬◇= j∧◻<◇= j))

pre f #(i, j)∶∶=E(i∧¬◇= j∧◻<(◇=i↔◇= j))
pre f #

∼(i, j)∶∶=pre f #(i, j)∨U(◇=i↔◇= j)

To understand these definitions, recall that we say that a world identifies an object
when it is part of that object and the object consists of copies of one and the same
world. These copies are used to represent that an object has a property present in a
property ranking. In Figure 2, for example, world w7 is a representative of object c for
the property large. Thus, the formula Ei¬◇

= j may be read as ‘object i has a property
that object j does not have’. Similarly, ◇<i can be read as ‘there is a more important
property (than the current one) that object i has’. These readings may help explain the
definitions. pre f ⊺(i, j) may be read as ‘there is a property such that i has it and j does
not, and for all more important properties, neither i nor j has any of them’. The second
disjunct in the definition of pre f ⊺∼ (i, j) defines when two objects are equally preferred
with respect to ⊺, and may be read as ‘if there is a property that i has, but i does not
have any more important properties, then j has that property too and does not have any
more important properties either, and vice versa’. Similar readings can be provided for
the other preference operators.

Multi-attribute Preference Logic 191

Proposition 4 shows that the relation between weak and strict preference is as usual,
and, moreover, a strict preference according to ⊺ or κ implies a strict preference accord-
ing to #.

Proposition 4. We have:
1. ⊧ pre f s(i, j)↔ pre f s

∼(i, j)∧¬pre f s
∼(j, i) for s ∈ {⊺,κ ,#}.

2. ⊧ pre f ⊺(i, j) → pre f #(i, j)
3. ⊧ pre f κ(i, j) → pre f #(i, j)

Example 3. Given the model of Figure 2, we can derive that pre f #(b,d). By definition,
this is the case when E(b∧¬◇= d ∧◻<(◇=b↔◇=d)) is true. This means that there
must be a world w that is named b that has no equally ranked world named d, and,
moreover, for every higher ranked world v there is an equally ranked world named b if
and only if there is an equally ranked world with name d. By inspection of Figure 2,
world w5 fits the description.

4 MPL Defines Ranked Knowledge Bases

Here we prove that the preference orderings of Definition 6 define those of Brewka [4].
Brewka [4] calls property rankings ranked knowledge bases, defined as follows:

Definition 7. (Ranked Knowledge Base) A ranked knowledge base (RKB) is a set
F ⊆ L0 of objective formulae together with a total pre-order ≥ on F. Ranked knowledge
bases are represented as a set of ranked formulae (f ,k), where f is an objective formula
and k, the rank of f , is a non-negative integer such that f1 ≥ f2 iff rank(f1) ≥ rank(f2).
That is, higher rank is expressed by higher indices.

In the setting of [4], comparing objects given a ranked knowledge base means compar-
ing truth assignments which represent these objects, analogously to the representation
of the three houses used in Figure 1. It is easy to see that this example is represented by
the following ranked knowledge base: {(affordable,3), (closeToWork,2), (large,1)}.

Object preferences can be derived in multiple ways from a ranked knowledge base.
In order to define these strategies, some auxiliary definitions are introduced next. Below,
Kn(m) denotes the set of properties of a certain rank n that are satisfied with respect
to truth assignment m; maxsatK(m) denotes the highest rank associated with the prop-
erties that are satisfied by assignment m, and maxunsatK(m) denotes the highest rank
associated with the properties that are not satisfied by m.

Definition 8. Let K be a ranked knowledge base and m ∈ 2At .

Kn(m) ∶∶= { f ∣ (f ,n) ∈K,m ⊧ f}
maxsatK(m) ∶∶= −∞ if m /⊧ fi for all (fi,vi) ∈K,

max{i ∣ (f , i) ∈K,m ⊧ f} otherwise
maxunsatK(m) ∶∶= −∞ if m ⊧ fi for all (fi,vi) ∈K,

max{i ∣ (f , i) ∈K,m /⊧ f} otherwise

Using these auxiliary definitions, preference orderings m1 ≥
K
s m2 are defined which

mean that object (truth assignment) m1 is (weakly) preferred over object m2 according
to strategy s.

192 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 9. (Preference Orderings) Let K be a ranked knowledge base. Then the
following preference orderings over truth assignments are defined:
● m1 ≥

K
⊺ m2 iff maxsatK(m1) ≥maxsatK(m2).

● m1 ≥
K
κ m2 iff maxunsatK(m1) ≤maxunsatK(m2).

● m1 ≥
K
m2 iff ∣Kn(m1)∣ = ∣Kn(m2)∣ for all n, or there is n s.t. ∣Kn(m1)∣ > ∣Kn(m2)∣, and

for all j > n ∶ ∣K j(m1)∣ = ∣K j(m2)∣.

To simplify, we make the assumption here that different properties cannot have the
same ranking. In that case, the set of all satisfied properties of a given rank is a singleton
set or the empty set, we have that ≥ is a strict linear order on F - also denoted by
>, and, as a result, the ⊆ and # orderings coincide. We also assume that properties in a
ranked knowledge base are consistent. Finally, we may assume that a ranked knowledge
base does not contain logically equivalent properties with different ranks since such
occurrences except for the one ranked highest can be discarded as it has no influence
on any of the preference orderings.

Definition 10. (Translation Function) The function τ translates ranked knowledge
bases K = ⟨F,≥⟩ and truth assignments m to formulae and is defined by:
● τ(K) ∶∶= ⋀{EC(ϕ) ∣ ϕ ∈ F}∧

U(⋁{C(ϕ) ∣ ϕ ∈ F or ϕ = ¬⋁{χ ∣ χ ∈ F}})
⋀{C(ϕ) <∀∀ C(ψ) ∣ ϕ ,ψ ∈ F & ψ > ϕ}∧
⋀{C(¬⋁{ϕ ∣ ϕ ∈ F}) <∀∀ ψ ∣ψ ∈ F}∧

● τname(m) ∈Nom
● τ(m) ∶∶= ⋀{Eiϕ ∣m ⊧ ϕ}∪{¬Eiϕ ∣m /⊧ ϕ} with i = τname(m)

The translation of a ranked knowledge base K expresses that for each property ϕ
in K, there exists a corresponding cluster by Cϕ , that there are no other clusters than
those specified by the properties, and one extra cluster for the case in which none of
the properties is satisfied. It forces the ranking of these clusters to be the same as the
property ranking induced by K, with the added extra cluster as least important one. The
translation also associates an object name with a truth assignment and states for each
property whether the object (truth assignment) has the property or not.

Example 4. Using the translation function, and assuming that τname(house1) =
b, τname(house2) = d and τname(house3) = e, the RKB {(affordable,3),
(closeToWork,2),(large,1)} translates into:

1. E(C(affordable))∧E(C(closeToWork))∧E(C(large))
2. U(C(affordable)∨C(closeToWork)∨C(large)∨
C(¬(affordable∨closeToWork∨ large)))
3. C(¬(affordable∨closeToWork∨ large)) <∀∀
C(large) <∀∀ C(closeToWork) <∀∀ C(affordable)
4. Eb(affordable)∧Eb(closeToWork)∧¬Eb(large)
5. Ed(affordable)∧¬Ed(closeToWork)∧¬Ed(large)
6. ¬Ee(affordable)∧Ee(closeToWork)∧Ee(large)

A model of this theory is shown in Figure 2. Although only objects b, d and e are spec-
ified in the theory, for illustrative reasons this model contains all possible objects (there

Multi-attribute Preference Logic 193

is a world, and hence an object, for every possible valuation of the three propositional
atoms). Every property has its own cluster, which means that every object satisfying
that property has a world in that cluster, and that every world in that cluster satisfies
that property. No worlds exist outside the four specified clusters, and the order among
clusters is fixed. The only ways a model of this theory can be structurally different from
the one shown are by removing objects that are not b, d or e (but then all worlds be-
longing to that object have to be removed at once), or by adding more worlds, but only
at the same ‘places’ as the worlds shown.

Theorem 1 shows that every multi-attribute preference model that is a model of the
translation of a particular RKB yields the same preference ordering as the original RKB.

Theorem 1. m1 ≥
K
s m2 iff ⊧ τ(K) ∧ τ(m1) ∧ τ(m2) → pre f s

∼(τname(m1),τname(m2))
where s ∈ {⊺,κ ,#}.

Proof. Assume that τname(m1) = i and τname(m2) = j, and observe that the translation
of K = ⟨F,≥⟩ is equivalent to:
(1) C(¬(f1 ∨ . . .∨ fn)) <∀∀ C(f1) <∀∀ . . . <∀∀ C(fn),
(2) ∀ f ∈ F ∶ E(C(f)) and
(3) U(C(f1)∨ . . .∨C(fn)∨C(¬(f1∨ . . .∨ fn))).
For brevity, we only prove the left to right direction for the case m1 >

K
κ m2. Then we have

maxunsatK(m1) <maxunsatK(m2) and maxunsatK(m2) > −∞, so there is a formula fk

in F such that
(4) m2 /⊧ fk,
(5) m1 ⊧ fk and
(6) ∀ f ′ > fk ∶m1 ⊧ f ′ & m2 ⊧ f ′.
Applying the translation function τ , we then get:
(4) ¬E j fk,
(5) Ei fk and
(6) ∀ f ′ > fk ∶ Ei f ′ ∧E j f ′.

From (5), (2) and Prop. 3.3 it then follows that
(8) EiC(fk).
From (8), (4) and Prop. 3.2 it follows that
(9) Ei¬◇

= j∧C(fk).
And from (6) and Prop. 3.1 it follows that
(10) ∀ f ′ > fk ∶ ◇

=i∧◇= j.
Using (1) and (3) we obtain
(11) C(fk) → ◻

<(C(fk+1)∨ . . .∨C(fn)).
From (10) and (11) we obtain
(12) C(fk) → ◻

<◇= i∧◻<◇= j.
Then (9) and (12) can be combined into E(i∧¬◇= j∧◻<(◇=i∧◇= j)), which is the
definition of pre f κ(i, j).

Example 5. We now show how to formally derive a preference statement from the for-
mulae obtained by translating a ranked knowledge base in Example 4. As an illustration,
we show that pre f κ(b,d) can be derived.
From (4.4) Eb(closeToWork), (4.1) E(C(closeToWork)) and Proposition 3.3 we obtain

194 K.V. Hindriks, W. Visser, and C.M. Jonker

(1) EbC(closeToWork).
From (4.5) ¬Ed(closeToWork) and Proposition 3.2 it follows that
(2a) C(closeToWork) → ¬◇= d.
From 4.3 and 4.2 we can derive that
(2b) C(closeToWork) → ◻<C(affordable).
By combining (1), (2a) and (2b) we derive
(3) Eb(¬◇

= d∧◻<C(affordable)).
Now, from Proposition 3.1, (4.4) Eb(affordable) and (4.5) Ed(affordable), we derive
(4a) C(affordable)→◇=b and
(4b) C(affordable) →◇=b.
Using (3), (4a), and (4b), we obtain Eb(¬◇

= d∧◻<(◇=b∧◇=d)), which is the defini-
tion of pre f κ(b,d).

5 Conclusion

In this paper we introduced a modal logic for qualitative multi-attribute preferences. The
logic is based on Girard’s binary preference logic [7], but extends this logic with objects
and clusters that introduce the possibility to reason explicitly about multiple attributes.
We showed that multi-attribute preference logic is expressive enough to define various
natural preference orderings based on property rankings [4,6]. The additional value
of the logic is that it is possible to reason about these different preference orderings
within the logic. This means we cannot only reason about which objects are preferred
according to a certain ordering, but also about the relation between different orderings
as is shown in Proposition 4.

One possible extension to multi-attribute preference logic is the introduction of in-
dices for different agents. In this way, distinct preference orderings for several agents
can be expressed. This introduces the possibility to reason about properties such as
pareto-optimality of objects (an object is pareto-optimal if there is no other object that
is better for at least one agent and not worse for the other agents), which is useful in the
context of e.g. joint decision making or negotiation.

We have made the assumptions that attributes are binary, and that priority orderings
are total linear orders. In future work we plan to investigate how we can loosen these
assumptions. For example, if multiple attributes can have the same importance, the #
and ⊆ orderings will differ and we will be able to encode trade-offs between attributes.

Our main concern in this paper has been the expressiveness of multi-attribute prefer-
ence logic. Other questions such as a complete axiomatization of the logic, succinctness
and complexity remain future work. We plan to develop a reasoning system in which
agents can reason about qualitative multi-attribute preferences in various settings. In
our future work we will focus more on the reasoning mechanism and how different
domains can be modelled accurately in our approach.

A more detailed comparison of multi-attribute preference logic with other preference
logics such as Qualitative Choice Logic [5] is planned. Other areas for future work
concern the representation of dependent properties and the relation of multi-attribute
preference logic to e.g. CP-nets [3].

Multi-attribute Preference Logic 195

Acknowledgements. This research is supported by the Dutch Technology Founda-
tion STW, applied science division of NWO and the Technology Program of the Min-
istry of Economic Affairs. It is part of the Pocket Negotiator project with grant number
VICI-project 08075.

References

1. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Informa-
tion 4(3), 251–272 (1995)

2. Boutilier, C.: Toward a logic for qualitative decision theory. In: 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 75–86 (1994)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135–191 (2004)

4. Brewka, G.: A rank based description language for qualitative preferences. In: 16th European
Conference on Artificial Intelligence (ECAI), pp. 303–307 (2004)

5. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelli-
gence 157(1-2), 203–237 (2004)

6. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness
of propositional languages for preference representation. In: 9th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pp. 203–212 (2004)

7. Girard, P.: Modal Logic for Belief and Preference Change. PhD thesis, Universiteit van Am-
sterdam (2008)

8. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computa-
tion 11(1), 41–70 (2001)

9. Hansson, S.O.: Preference logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn., vol. 4, pp. 319–393. Kluwer (2001)

10. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-
offs. Cambridge University Press (1993)

11. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
Universiteit van Amsterdam (2008)

12. von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)

	Multi-attribute Preference Logic
	Introduction
	Multi-attribute Preference Logic
	Syntax and Semantics
	Clusters

	Preference Orderings
	MPL Defines Ranked Knowledge Bases
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

