
TOWARDS MULTI-OBJECTIVE GAME THEORY – WITH APPLICATION TO GO

A.B. Meijer and H. Koppelaar
Delft University of Technology. Faculty EWI. Section Mediamatics.

Mekelweg 4, P.O.Box 356, 2600 AJ, Delft, The Netherlands.
{a.b.meijer, h.koppelaar}@ewi.tudelft.nl

KEYWORDS Combinatorial Games, Multiple Ob-
jectives, Computational Intelligence, Dependence of
Games, Threat, Game of Go, Ko

ABSTRACT

We de…ne a multi-goal as a conjunction and/or disjunc-
tion of ordinal-scaled objectives. We give exact formu-
las to compute the conjunction and disjunction of in-
dependent combinatorial games associated with the ob-
jectives. Dependence of games is formalized. We also
propose a de…nition for the (con/dis)junction of e¤ec-
tively dependent games. In all the above formulas, we
can work with uncertain and unresolved (ko) outcomes.
With these formulas, the status of a multi-goal can be
computed with considerable less e¤ort compared to cur-
rent search approaches. Algorithms to compute multiple
solutions elegantly and to extract the threats to a won
game from its search tree are outlined, implemented and
applied.

INTRODUCTION

Multiple objectives (or shorter: multi-goals) are com-
monly used by human players of strategic games like
Chess and Go. For instance, in Chess, one could aim
at simultaneously attacking a horse and a rook. In Go,
one can rescue an endangered group either by connect-
ing it to another living group or by making life on its
own. Achieving a multi-goal does not necessarily imply
to win the game, the other part of the trick is to choose
the right set of goals to strive for. The use of multi-goals
helps the player to obtain overview and structure in the
game.
Computers are not humans and do not have to follow
the same (multi-goal) approach as humans. Deep Blue
beat human Chess world champion Kasparov in 1997
with the single goal of getting a better position than the
opponent, using a brute force approach where heuristics
gave an estimate of the state of the game. Other good
Chess programs use a similar approach.
Go is a game far more complex than Chess. Its aver-
age branching factor is around 240, compared to around

40 for Chess. Full board evaluation is expensive to com-
pute and cumbersome to design and implement, whereas
for Chess exist fast and reasonably good heuristics. Go
needs a di¤erent approach (Wilmott e.a., 1999; Bouzy
and Cazenave, 2001).
In their respected computer Go survey, Bouzy and
Cazenave (2001) pointed out that a full board Go evalu-
ation function needs tactical searches to determine prop-
erties like safety and connectivity. Several Go programs
use multiple goals in some way. However, there is little
theoretical work on this subject or publications about
it. Bouzy and Cazenave conclude that ”the problem of
performing tree search on conjunctions and disjunctions
of goals remains to be solved”. Also, ”An interesting
idea would be to formalize (...) the interaction between
several games”.
This paper addresses the problem of multi-goals, i.e.
conjunctions and disjunctions of goals. First, we give
an introduction to the game of Go and Combinato-
rial Game Theory. Then we discuss independent multi-
goals, followed by a treat of dependent games. We con-
tinue with algorithms for …nding multiple solutions and
threats, show some experimental results and end with
concluding remarks.

THE GAME OF GO

Go is an ancient game, originated in China about 4000
years ago. It is a two-player, deterministic, complete-
information, partizan, zero-sum game. Go is played on
a 19£19 grid (although other sizes are also used), which
is initially empty. The two players have to embark ter-
ritory by alternately placing a stone on a grid, gradu-
ally building strongholds and eventually walls that com-
pletely surround one’s territory. The goal of the game
is to end with more territory than your opponent.
The rules of Go are very simple in principle (but in …-
nesse, di¤erent rule sets like the Chinese, Japanese or
mathematical Go rules vary quite a bit). The captur-
ing rule is the most important, stating that a string
of stones gets captured if all of its neighbouring inter-
sections (called liberties) are occupied by enemy stones.
For example, white can capture the four black stones



Figure 1: Examples on the Go rules and game states

in the middle left of …gure 1 by playing a. It also
implies that the two x ’s are suicide, which implies in
turn that the white group that surrounds them cannot
be captured (Go terminology: the group lives). The
white group can only be captured if white would co-
operate foolishly and plays at one of the x ’s himself.
Black is then allowed to play the “temporary suicide” of
the other x, because this would capture the entire white
group and the suicide is resolved. The black group in
the upper left should also live, even if white moves …rst.
If white b, then black c (and vice versa) and black has
two eyes.
The ko rule is also important. The simplest formulation
is that immediate recapture is prohibited. However, the
ko rule varies a lot over di¤erent rule sets. A useful
and general formulation is that a move is forbidden if it
repeats the board position. An example of a ko is the
situation around k. White can capture a black stone by
playing k, and if black were to recapture immediately
by playing to the right of k the board situation would
be repeated. Without a ko-rule this could go on and on
until one of the players falls asleep.

COMBINATORIAL GAME THEORY

This section introduces (the representation of) Combi-
natorial Game Theory. It is a mathematical theory for
two-player games and numbers, developed by J.H. Con-
way (1976) and adapted to many games by Berlekamp,
Conway and Guy (1982). However, it can also be used
for subgoals like ”capture string” or ”kill group”. A

combinatorial game can be associated with every goal.

De…nition 1 A combinatorial game G = fF jOg is
composed of two sets F and O of combinatorial games.
Every combinatorial game is constructed this way.

The left part of G, F, can be seen as the set of board
positions that player Friend can reach with one legal
move. Right part O can be looked at as the options for
player Opponent. Essentially, F can have two possible
values, W (a win for Friend) or L (a loss for Friend, so
a win for Opponent). If Friend has a legal move which
ensures a won game, then the value of F is W. For a mo-
ment we assume that we have enough computing power
to compute the values, otherwise we would have to intro-
duce another symbol to represent uncertain outcomes.
This gives four possible states for a combinatorial game:
WjW, WjL, LjL and LjW (we will use both WW and
WjW as abbreviations for {WjW}). The left half of a
game value is the maximum result that Friend can ob-
tain, the right half is Opponent’s best result.
WjW denotes a game that is won by Friend, irrespective
of who moves …rst (both player can at best move the
game to W = a win for Friend). This means that Friend
does not have to spend a move to win the game. A
Go example is the (life status of the) white group in
the bottom left of …gure 1, which lives unconditionally.
Another example is the black group in the upper left, it
lives even if white moves …rst (white b, black c and vice
versa).
WjL is an unsettled game, it is won by the player who
moves …rst. An example is the life status of the white
group in the bottom right corner. If white moves …rst he
can play at d, resulting in a living shape (two eyes). If
black plays d, the resulting shape is dead (one eye only).
LjL is a lost game for Friend, so a sure win for Opponent,
even if Friend moves …rst. It is the opposite of WjW.
Killing the black group in the upper left corner is a lost
game for white.
LjW is a somewhat strange equilibrium situation where
the player who moves …rst will lose the game. In Go, this
situation is known as seki. The triangled stones form a
seki: either player who wants to capture the opponent
string of triangled stones and plays at one of the two
shared intersections will immediately be captured him-
self. Not playing in this game is best for both players.
In essence, a game can have only two values, W or L.
However, it is often intractable to compute the precise
game value. Cazenave (1996) therefore extended Con-
way’s theory to uncertain outcomes. He introduced a
symbol U to denote an uncertain game value. Cazenave
showed that U can be used as a control parameter along
the risky-safe axis, since one is free how to evaluate of U.
Evaluating U as if it were L models a very conservative
strategy, evaluating U as if it were W models a highly
risky strategy. More neutral strategies are equally well
possible.



In Go, even more symbols are useful because of the ko
rule. The outcome of a game can be ko, like the life and
death situation of the black group in the upper right of
…gure 1. In order to make f his second eye, black needs
to capture the white stone with e and prevent recap-
ture. The outcome of this ko will eventually depend on
the existence of threatening moves somewhere else on
the board, since after a threat is answered by the op-
ponent the ko-recapture is no longer prohibited. In the
end, a ko …ght will be either W or L, depending on the
number of threats of each side. However, it would be
wise to call the outcome ”ko” and not to try and resolve
the ko immediately (i.e. during a search procedure), by
searching lines of play starting with a ko-threat. This
would mix up local and global issues, causing all kinds
of complications, result in higher branching factors and
might not even be necessary (e.g. example 8).
There are di¤erent types of ko: ko with Opponent to
…nd a threat …rst, ko with Friend to …nd a threat …rst,
indirect ko’s like multi-stage ko and multi-step ko and
even more exotic types. For clarity, we will only intro-
duce symbols for the …rst two, most common, types. We
denote them KO" and KO#, respectively. KO" means
that Friend can move the game to W (if the ko rule al-
lows it). Opponent can move KO" to KO#, upon which
Friend will have to …nd a useful ko-threat …rst, before he
can move the game back to KO". If Friend has no use-
ful ko-threat, Opponent can move the game to L with a
second play. Summarizing,

KO"= fW jKO#g; KO#= fKO" jLg;

if the ko-rule allows the required move.
Game notations like LjL, UjL, WjL and WjKO# corre-
spond to what Go players call the status of a game. It
is a summary of the outcomes of a game with either of
the players moving …rst. However, Combinatorial Game
Theory is more general. The left and right parts of a
game are games themselves, each having a left and right
part (remember that the de…nition of a combinatorial
game is recursive). These latter left and right parts de-
note the results which can be achieved if a player moves
twice in a row in the same game (e.g. if the opponent
passes or plays in a di¤erent game).
We now have new games like for example WjLjjLjL. This
is a game which Opponent can move to the right side
of the double vertical bar, i.e. LjL or lost for Friend.
Friend can only move the game to WjL, unsettled, upon
which Opponent can answer and move WL to L in the
usual way. If Friend got a chance to play a second move
in a row, he can move this game to W. In other words,
this game is won for Opponent, but Friend has a threat
to snatch victory away if he gets two moves in a row. In
Go, such moves are useful ko-threats.
We can also have games like KO"jLjjLjLjjjLjLjjLjL,
where it would take Friend three moves in a row to turn
this lost game into KO" (and a fourth to win the ko).

And so on.
When there is no ambiguity in how to read games,
we will drop some vertical bars and even some out-
come symbols. For example, WjLjjLjL is also de-
noted WLjLL and sometimes simpli…ed to WLjL.
KO"jLjjLjLjjjLjLjjLjL becomes KO"LLLjLLLL and can
be simpli…ed to KO"LLLjL.
Some games have outcomes representing a score, for in-
stance the territory game in Go. The symbols of such
games correspond to natural numbers and valuate on a
nominal scale, whereas W, L, U, and ko outcomes are
symbols valuating on an ordinal scale. These games can
be added up, for instance to …nd the total ’amount’ of
territory (amount is written between inverted commas,
as in general a sum of games remains a game and not a
number). It makes little sense, though, to add up sym-
bols of an ordinal scale. Conway’s famous formula for
adding up two independent games G and H is as follows
(Conway, 1976),

G + H =
©
GL + H;G + HLjGR + H;G + HRª

;

where GL and GR denote the left and right part of G,
respectively. The commas indicate that both players
have two options, to move in either G or H.
Sums of independent games is a well-studied subject in
combinatorial game theory, see for instance (Berlekamp
e.a., 1982). It has been applied to Go endgames, where
the games are (almost) independent, resulting in nearly
perfect play and performance superior to the best pro-
fessional players. On the contrary, research on sums of
dependent games is still in its infant stage. There are
currently two approaches, each having its own draw-
backs: (1) assume that the games are independent and
(2) merge the games into one bigger game.
To our knowledge, the only publication on multiple goals
in two-player games is (Willmott e.a., 1999). It devises
a method to solve conjunctions of goals, by means of
hierarchical planning. Although this results in a greatly
reduced search space, the method requires hand-coded
domain knowledge and is very sensitive to gaps in the
knowledge-base. Moreover, disjunctions and combina-
tions of conjunctions and disjunctions of goals are not
treated.

MULTI-GOALS

Multi-goals may appear in many games, at least in the
mind of a strategic player, but also in real world situa-
tions. They come in many forms, sometimes expressing
one wants to do two or more things simultaneously, an-
other time it enumerates di¤erent means to achieve the
same goal. Our de…nition is as follows.

De…nition 2 A multi-goal is a logical expression of two
or more ordinal-scaled objectives in two-player games.



A logical expression is a conjunction and/or disjunction.
Ordinal-scaled means that the symbols (W, L, etc.) are
partially ordered. A combinatorial game can be asso-
ciated with a multi-goal just as well as with a single
goal.

Example 3 H = G1 AND (G2 OR G3).

This example expresses a general multi-goal, not tied
to a particular game. The Gn could perfectly well be
associated with Chess goals like capture pawn or isolate
queen. The multi-goal would have little sense, though,
had the compound goals integer-valued outcomes. For
such games, one would rather use a sum of games.
Multi-goal generation could be automated by means of
hierarchical decomposition, or simply by hand-coding.
With automated multi-goal generation, one would be
close to a Go playing machine. We will not elaborate on
it here.
Multi-goals are not at all new. Their status can be com-
puted using the same algorithms as for single goals, e.g.
alpha-beta- or proof-number search. The main di¤er-
ences between current single- and multi-goal search are
the evaluation function and move generation. A typical
current multi-goal evaluation function looks the same
as a single-goal evaluation function from the outside, it
evaluates a goal. Internally, the multi-goal evaluation
function will do several single-goal evaluations (one for
each compound goal Gn) and then evaluates the logical
expression, compared to just one for a single-goal evalua-
tion function. A multi-goal move generator will be some
sort of combination of the move generators of the com-
pound goals. For example, a simple, uninformed and
straightforward method would be to generate the union
of all the moves, generated by the respective compound
move generators. With the triple-goal of example 3, this
method would result in an average branching factor of
around three times the average branching factor of one
of the Gn’s search tree.
The current method of computing multi-goals is not ef-
…cient. It does not employ possible independence of the
compound goals. When the games in a multi-goal are
independent, then they can be solved separately (with
a relatively small branching factor) after which the logi-
cal expression can be computed in almost no time. With
this method, the computation time can be sped up quite
dramatically.
Thomsen (2002) ran an experiment on a simple double-
goal. Solved separately, the goals were disproved with
80 nodes. Solved as a multi-goal, using a method com-
parable to the straightforward one above, the disproof
took 2520 nodes. This shows it is indeed worth to im-
plement a computational intelligent approach (Thomsen
also pointed out that it is of even greater importance in
multi-goals to use a transposition table).
We propose the following de…nition for a disjunction of
two independent goals G and H (inspired by Conway’s

formula for addition):

De…nition 4 G OR H =©
GL OR H;G OR HL j GR OR H;G OR HR

ª
:

The de…nition for a conjunction of two independent
goals is obtained by replacing OR by AND. De…nition
4 expresses that both players can choose whether they
play in G or H (e.g. if Friend plays in G, then he moves
the multi-goal from G OR H to GL OR H). In order to
compute multi-goals, we just need the next de…nition,
in which g is an arbitrary game.

De…nition 5

W OR g = W
L OR g = g
W AND g = g
L AND g = L
U OR U = U
U AND U = U

U is also an uncertain outcome, but we designate it an
extended symbol, because it is less uncertain to win one
of two uncertain games than just one. U is more un-
certain than U, because it means winning both of two
uncertain games. Summarizing the partial ordering of
all the symbols: W > U > U > U > L and W > KO"
> KO# > L. The ordering between uncertain and ko
outcomes is subject to a strategy regarding risk. One is
free to adapt this strategy at any moment to the state
of the game.
Further we assume each player can win an uncertain
game if he can make an extra move in it. This implies
for instance that WjU = WjjUjL and UjL = WjUjjL
(note that this is di¤erent from saying UL = W and UR

= L).
The following four examples, applying de…nitions 4 and
5, all assume the games are independent. Black is player
Friend.

Example 6
W jL OR W jL =
W OR WL, WL OR W j L OR WL, WL OR L =
W,W jWL,WL =
W jWL.

This example shows that it always possible to win one
of two unsettled games. Friend does not have to play
in this game to win it, Opponent just has threats.
The third line expresses both players have two ways to
achieve the same result. Moving in either of the two
WjL games yields the same result for both players. A
Go instance of this multi-goal is the upper side of …gure
2. Black string 2 has one eye. It can get a second eye
either by connecting to string 1 or by catching string
3. The game Connect(string 2, string 1) is WjL. Black
wins it with a, but black loses after white a. The game
Catch(string 3) is also WjL. The vital move for both



players is b. Black can always win on of the two goals,
so string 2 lives. White only has a and b as (ko) threats.
Playing both of them would kill string 2.

Example 7
WL AND WL =
{W AND WL} j {L AND WL} =
WLjL.

Winning both of two unsettled games is a lost game,
as it would take two moves in a row. A threat is the
only result for Friend. An instance concerns string 4, it
lives when both C and D become an eye. The games
Make_eye(C ) and Make_eye(D) are both WjL, the vi-
tal point for both players is e, respectively f. So, string
4 is dead, e and f are threats for black to save his string.

Figure 2: A collection of multi-goal examples.

Example 8
KO" OR KO# =
{W jKO#} OR {KO"jL} =
W OR KO"jL, ... jj KO# OR KO#, W jKO# OR L =
W jj W jKO#, W jKO# =
W jWKO#.

This is also a won game for Friend, regardless the
amount of ko-threats at Opponent’s disposal. All that
is in it for Opponent is a threat to make a ko (in the ex-
otic situation that Opponent has a double-ko elsewhere
on the board, the supply of ko-threats is in…nite; the
outcome will then depend on the rule-set). An instance
is the black group in the upper right. It has already one
certain eye, H. The other potential eyes, G and I, are

both subject to a ko …ght. Make_eye(G) is KO", black
can win it with j, white can move the ko …ght to KO#
with j. If white wins the ko with a second move at 1,
then G has become a so-called false eye. Even though it
is surrounded by two black stones, G is not a suicide for
white. A false eye is of no use for living. Make_eye(I )
is KO#, black will lose it if white covers at k, turning
I into a false eye. Black can turn this game into KO"
by catching stone 6 with k and possibly win it with a
second move at 6. However, as example 8 shows, black
does not have to play in order to win the multi-goal.
White cannot win both ko’s. If white plays in one ko
…ght, black can simply play in the other.
De…nition 4 applies to two-compound multi-goals. As
the conjunction/disjunction of two games returns a
game, a multi-goal of three (or more) goals can be com-
puted by applying de…nition 4 …rst to two of the com-
pound goals and then to the result and the third com-
pound (and so on, were there more goals).

Example 9
WU AND (WL OR UL) =
WU AND {W OR UL, ... j L OR UL, WL OR L} =
WU AND {W j UL, WL} =
WU AND W jUL =
WU AND WU =
{W AND WU jjj U AND W jU} =
{WU jjj ... , U AND W jj L, U AND U} =
WU jUU.

DEPENDENT GAMES

Conway’s formula for addition and de…nition 4 for con-
junction and disjunction of games apply to independent
games. They embody that both players must choose
which of the two games to play in. In general, a move
can play in more than one game. Then the games are
not independent and the above formulas do not apply.
We will give four examples of a move which plays in two
goals, in which Friend plays white.
In games with moving pieces, like Chess, it is com-
mon that moving a piece to achieve one goal renders
it unusable to achieve another goal, for which it was
also needed. This situation is an analogy of the Suss-
man anomaly in hierarchical planning (Sussman, 1975),
where the postconditions of an action achieving one goal
con‡ict with the (previously satis…ed) preconditions of
another goal. In games with non-moving pieces like Go,
the Sussman anomaly is less common. It would occur if
a winning move in one game is a losing move in another
game, while a winning move does exist. A Go example
is the left side of …gure 2, where string 7 already lives.
Connect(string 8, string 7) is WjW: white m, black n,
white o, black p and string 8 is saved. Connect(string
9, string 8) is WjL. However, by connecting string 9 to



string 8) black takes away a liberty of string 8. Con-
sequently, Connect(string 8, string 7) has become WjL
and after white m, black n, white can capture a 14-stone
string with p. We say these two games are Sussman-
dependent.
Another case of goal dependency is when a move si-
multaneously achieves two goals. An instance is at the
bottom right of …gure 2, where black can turn both U
and V into eyes by playing w. White can turn them
both into false eyes with w.
When a friend move plays both in WL and in WLjLL,
Go players call that move sente. It achieves one goal and
at the same time threatens another goal. Opponent will
have to reply if he wants to ensure the latter. (There
is also another kind of sente move, playing just in one
nominal-scaled game. It makes a little pro…t with the
…rst move, but threatens big pro…t with a second.) In a
way, a sente move achieves a goal for free, as it holds the
initiative. An instance is white v. It wins Capture(string
10) and next threatens w, turning Make_eye(U ) into L
(playing w immediately does not work).
A double threat by Opponent plays in two WjWL
games. A double threat can lead him to victory in one
of two (dependent) WW games! Usually, Friend will
then have to choose which game to give up, unless he
has a double winning move to rescue both games si-
multaneously. In that case, we speak of an ine¤ective
double threat. An example of an e¤ective double threat
is white x. Black would like to connect his one-eyed
strings 12 and 14 in order to live. Connect(string 12,
string 13) and Connect(string 13, string 14) are both
won (WjWL), but they share threat x. After white x,
black cannot guard against y and z simultaneously.
Current Combinatorial Game Theory has its focus on
the value of games. The notation of a game does gen-
erally not include the move(s), which achieves a certain
value. As said above, to determine dependence between
games: winning and threatening moves are indispens-
able. To detect Sussman-dependency in Go, one needs
to keep track of the losing moves as well. For the rest of
this article, we will assume the games are not Sussman-
dependent.

De…nition 10 A move is an achieving move if it is
the …rst move in a game and achieves a better result
compared to when the opponent would have moved …rst.
A move achieving a win is called a winning move.

In a WjL game, all moves achieving W are winning
moves for Friend. All moves achieving L are winning
moves from Opponent’s point of view. In games like
KO#jL and UjL, the moves leading to KO# and U are
achieving moves for Friend. A game like WLjLL does
not have achieving moves, as the game is already a win
for Opponent.

De…nition 11 A move is an n-move if it is one of n
moves in a row, which together achieve a better result

than when the opponent responds in the meantime. A
2-move is simply called a threat or a direct threat. An
achieving move is also called a 1-move.

The most straightforward direct threat is in games like
WLjLL and WWjWL, where Friend respectively Oppo-
nent have to move twice in a row to turn the result
around. KO#LjLL or ULjLL is a threat for Friend to
turn a lost game into a ko respectively an uncertain out-
come. Cazenave (1996) identi…ed WUjUU as a general
threat for Friend. However, we prefer to also consider
games like ULjLL and KO#LjLL a threat.
3-moves correspond to games like WLLLjL and
WjWWWU, these games can be moved to a direct
threat. Generally, an n-move moves a game to an (n–
1)-move game (n>1). A direct threat moves a game to
unsettled.

De…nition 12 Two combinatorial games are (n,m)-
dependent if n-moves of one game overlap with m-moves
of the other, else they are (n,m)-independent. Moves in
the overlap are called (n,m)-moves.

Two unsettled games are (1,1)–dependent if a move
plays in both of them. An example of (2,2)-dependency
is when a double threat occurs. A sente move, holding
the initiative, expresses (1,2)-dependency between two
games.

De…nition 13 Two combinatorial games are e¤ec-
tively (n,m)-dependent if the opponent has no move
which successfully answers an (n,m)-move in both
games simultaneously, else they are e¤ectively (n,m)-
independent.

Whether or not a (n,m)-move is e¤ective has to be com-
puted carefully, but we will not elaborate on that in this
article.

De…nition 14 The tally of a game is the number of
moves in a row, for which the game has been evaluated.

Example 15
tally(W jL) = 1,
tally(WW jWL) = 2,
tally(WWWW jWWUL) = 3).

Please note that the number of symbols doubles with
every increment of the tally. Now it is time to introduce
an axiom on e¤ectively dependent games.

Axiom 16 If Friend (Opponent) has an e¤ective
(n,m)-move on combinatorial games G and H and if G
and H are games at tally n respectively m, then Friend
(Opponent) can move the multi-goal G OR H to GL OR
HL (respectively to GR OR HR).

For e¤ectively independent games de…nition 4 still holds.



Example 17
Friend has an e¤ective double winning move in two
games G and H. Then:
G AND H =
WL AND WL =
(WL)L AND (WL)L j L AND WL =
W AND W jL =
W jL.

Compare WjL to WLjL for (1,1)-independent and e¤ec-
tively (1,1)-independent games.

Example 18
Opponent has an e¤ective (2,2)-move in games G and
H. Then:
G AND H =
W jWL AND W jWL =
W AND W jWL jj (W jWL)R AND (W jWL)R =
W jWL jj WL AND WL =
W jWL jj WLjL '
W jL (simpli…ed to tally 1).

Both players can move to a game where the opponent
only has a threat. Compare WjL to WLjL for (e¤ec-
tively) (2,2)-independent games.

ALGORITHMS

As one can see in the previous section, all achieving
moves and direct threats are important in multi-goals.
Below we will shortly describe two algorithms, one to
compute multiple solutions and one to compute direct
threats. Next, we will run them on some Go situations
to determine (n,m)-dependency.
We used the generic proof-number search algorithm
from the PubGo++ package (publicly available at
www.bath.ac.uk/~eespjl/go.html), and extended it to
our purposes. Proof-number search was invented by
Allis (1994). It is neither a depth-…rst algorithm like
alpha-beta, nor is it breadth-…rst. It is best-…rst, each
iteration expanding the most promising frontier node,
based on a pair of so-called proof-and disproof-numbers.
Each node in the search tree has such a pair, recording
the number of (grand)child nodes needed to prove (dis-
proof) in order to prove the node itself. It is (almost)
the A* analogue for two-player search.
A disadvantage of proof-number search is that it only
has proven, disproved and uncertain outcomes. In or-
der to …nd ko’s, one could redo the search with another
evaluation function, which would judge a ko outcome as
proven. We have not yet implemented this. Another
characteristic of proof-number search, often referred to
as a disadvantage, is that the whole search tree must be
stored in memory. We, however, see this as an advan-
tage, at least as far as the computation of multiple solu-
tions and threats is concerned. When the algorithm has

found one solution, it has also spent some time on trying
other solutions. These e¤orts do not go to a waist, we
simply reuse relevant parts of the tree. To …nd threats,
we post-process the search tree.
Our method for …nding another solution for any node
X in the tree is as follows:

1. temporarily detach the existing solution node(s)
from X,

2. make X the new root of the tree (if it was not the
root node already),

3. restart the search till another solution is found,

4. re-attach the already found solution(s) to X.

Figure 3: Black to capture the triangled stone. Winning
moves and threats are depicted.

This algorithm is simple and elegant. For the computa-
tion of multiple winning moves we apply this method to
the root node.
The idea behind our method for computing the threats
to a proven node is that every intersection in a proven
line of play is a potential threat. Had there been an
opponent stone on that intersection, then that line of
play could be thwarted. Lines of play not resulting in a
proof are neglected, they did not achieve a result and
therefore there is nothing to be threatened. This is
the biggest di¤erence with a very simple and straight-
forward method, described by Thomsen (2001), which
would consider a threat every move that has been played
in the search. His method does not need any tree post-
processing, but simply records all the moves played in



a search. Disadvantage is that some nodes, possibly
many, are falsely classi…ed as a threat (although Thom-
sen’s lambda-search method avoids most misclassi…ca-
tions indirectly by avoiding unnecessary lines of play).
The pseudo code of our depth-…rst method is as fol-
lows, where THREATS is a global variable collecting
the threats:

find_threats(node){
while(child = node.nextChild()){

if(child.isProven()){
THREATS.add(node.move());}

else{continue while;} // skip this child
find_threats(child);

endwhile;
}

After the above steps, we add all the neighbours of
THREATS, since a move on these points also has the
potential to disturb a winning line of play, as Thomsen
(2001) already pointed out. However, these threats may
appear to be ine¤ective.
Although our method for computing threats is di¤erent
than Thomsen’s, it yields similar results.

EXPERIMENTAL RESULTS

In this section we apply the two algorithms of the previ-
ous section. We keep it brief as we did not implement all
the details of the theory in this paper yet, only the (es-
sential) parts of …nding winning and threatening moves.
The goal is to capture the triangled stone in …gure 3,
black to play. The same situation is depicted three times
under rotation. In the upper left quadrant the output
of the multiple solution algorithm is given. We used a
simple move generator. For the attacker (black) it adds
moves at the liberties of the target string and intersec-
tions next to the liberties (in Go terminology: ladders
and loose ladders). For the defender it adds the same
moves plus attacks on vulnerable stones surrounding the
target string (ataris). Two solutions were found, a and
b. With both of them, black moves the capture game to
WjWL.
The upper right shows the output of the threat …nding
algorithm after black has played solution a, the bottom
left shows the output after solution b. Although many
more moves than the T’s were played during the search,
the algorithm was able to …nd all the real threats. How-
ever, it did falsely identify a few threats, mainly because
of the …nal step in the algorithm where it adds all the
neighbours of THREATS (see previous section).

CONCLUSIONS AND FUTURE WORK

We de…ned multi-goals as logical expressions of ordinal-
scaled objectives and de…ned a formula for the conjunc-
tion and disjunction of two independent games. In this

formula, we can use uncertain and (Go-speci…c) unre-
solved outcomes (ko). The formula introduces some
computational intelligence into the calculation of multi-
goals, which current approaches lack. We formalized
dependence between games, including sente moves and
double threats. We proposed a new formula for the con-
junction and disjunction of two e¤ectively dependent
games. Algorithms to compute multiple solutions and
threats have been outlined, implemented and applied.
Our plans for the near future are to implement the for-
mulas for dependent and independent games and some
other issues necessary to fully automate the computa-
tion of multi-goals. Another points is to enhance proof-
number search with unresolved outcomes like ko.

REFERENCES

Allis, L.V., 1994. Searching for Solutions in Games and Ar-
ti…cial Intelligence, PhD thesis, University of Limburg,
Maastricht.

Berlekamp, E., J.H. Conway and R.K. Guy. 1982. Winning
Ways (for your mathematical plays). Academic Press,
New York.

Bouzy, B. and T. Cazenave, 2001. "Computer Go: an AI
Oriented Survey". Arti…cial Intelligence, Vol 132(1),
pp. 39-103.

Cazenave T., 1996. Systeme d’Apprentissage par Auto-
Observation. Application au Jeu de Go. PhD thesis,
Université Pierre et Marie Curie, Paris.

Conway J.H., 1976. On Numbers and Games. Academic
Press, New York.

Sussman, G.J., 1975. A Computer Model of Skill Acquisition,
Elsevier, New York.

Thomsen, T., 2001. "Lambda-Search in Game Trees - with
Application to GO". ICGA journal.

Thomsen, T., 2002. Personal communication.
Willmott, S., J. Richardson, A. Bundy and J. Levine, 1999.

"An Adversarial Planning Approach to Go." In H.J.
van den Herik and H. Iida, eds., Computers and Games:
Proceedings CG’98, Springer-Verlag, Japan.


