Decision Processes

Martijn Willemsen
Eindhoven University of Technology
M.C.Willemsen@tue.nl

Behavioral Decision Making

- behavioral decision making research: how do people make decisions and judgments
- Methodology: Experimental Psychology
- Background fields: cognitive psychology, social psychology, economics, consumer research
- Today:
a primer into some essential parts of the field relevant for HTI research...

How to make good decisions?

Normative theories: How one should combine information to make the best (optimal) decisions
Descriptive theories: How can we best describe scientifically how people make decisions in everyday life?

Descriptive theories

The normative rules assume that decision makers:

- Search and use all available information
- Are fully rational
- Have sufficient processing resources

In real life people do not have sufficient time or resources to search for all information and combine these (via difficult computations) into an overall value judgment

Preference construction

Decision makers often do not have articulated preferences. Preferences are formed online, during the decision process.

Doing so they often violate principles of invariance:

Description invariance:
Preference should not be dependent on the
description of stimuli, if they are normatively equivalent
Procedure invariance:
Logically equivalent elicitation procedures should result in similar preference orderings

Framing example (Exp 1)

Gain-frame

Assume yourself richer by $300 \$$ than you are today. You
have to choose between:

- Sure gain of $\$ 100$
- 50% chance to gain $\$ 200$
50% chance to gain \$200 $\quad \left\lvert\, \begin{aligned} & \text { Q400 for sure }\end{aligned}\right.$ 50% change to gain nothing [28\%] $\quad \bullet$ Even change at $\$ 300$ or $\$ 500$

Loss-frame
Assume yourself richer by $500 \$$ than you are today. You
have to choose between:

- Sure loss of $\$ 100$
- 50% chance to lose nothing 50% change to lose $\$ 200$ [64\%] $\quad \begin{aligned} & \text { - Even change at } \$ 300 \text { or } \$ 500\end{aligned}$

Framing

Framing:

description differs: framing in terms of gains or losses
Descriptions are normatively equivalent
Outcomes are evaluated in isolation and therefore coded as losses or gains
Framing is a robust phenomenon:

- Within and between subjects
- Experts and lay people

Loss Aversion

Prospect Theory (Kahnemann \&Tversky, 1979) Losses loom larger than gains
The relative position of an attribute to a reference determines whether an attribute value is considered as a gain or a loss

- Endowment effect
- Reference effects
- Status-quo bias and Default effects

Loss Aversion in choice

Same difference between two options is given greater weight if viewed as a difference between two disadvantages (losses) rather as a difference between two advantages (gains) (Tversky and Kahneman, 1991)
Present job serves a reference point

Job	Social contact	$\begin{gathered} \text { Daily travel } \\ \text { time } \\ \hline \end{gathered}$	Ref A: $70 \% \text { for } X$
Present Job A	Isolated for long stretches	10 min	
New Job X	Limited contact with others	20 min	
New Job Y	Moderately sociable	60 min	Ref B:
Present job B	Much pleasant social interaction	80 min	66\% for Y

Defaults

We often encounter default choices

- Opt-in: take action to make something happen (receive emails, get additional insurance, etc.)
- Opt-out: take action to NOT make something happen
q Notify me about more health surveys
q Do NOT notify me about more health surveys

Why are defaults so strong?

- Framing (Loss aversion, status quo change)
- Default is seen as an implicit recommendation (source of information)
- Cognitive and physical laziness
- Default is subject of comparison

Implications of defaults: policy!

Organ Donation (Johnson \& Goldstein, 2003)
People are hesitant to make an active choice and are likely to select defaults

- Opt-in countries (e.g. Netherlands) have low numbers of registered donors (10-20\%) and less actual donations
- Opt-out countries (e.g. Belgium) have high numbers of donor ($80-90 \%$) and more acutal donations

Implication of defaults: consumers

How does one handle defaults in interfaces and on websites (privacy issues)

- Facebook: showed member purchases by default... causing a swift reaction by members!
- National railroad in Europe: include seat reservations as a default with ticket: reservations increased from 9\% to 47\%!

Implications of defaults: customization

- Mass defaults
- Benign defaults: best guess with least risk (maxicosi seats)
- Hidden-option (to prevent incorrect choices)
- Random defaults (can help finding best defaults)
- Personalized defaults
- Persistent default (based on past choices)
- Smart defaults (based on profile information)
- Adaptive defaults (based on real-time information)

Eliciting preferences

Different ways of measuring preferences:

- Choice task
- Rating judgments (quality, satisfaction)
- Pricing judgments
- Matching (making equal)

Procedure invariance: either of these procedures should result in similar preference orderings: if an option is preferred in choice, it should also be assigned a higher rating/pricing

Choice and Rejection (Shafir, 1993)

You currently have two vacation options that are reasonable priced. The trave brochure gives only a limited amount of information about the two options.

Choose: Given the information available, which vacation spot would you prefer? Reject: You can no longer retain your reservation for both spots. Given the information available, which reservation do you decide to cancel?

Spot A

average weather
average Beaches
medium-quality hote
medium-temperature water
average nightlife
Choice: 33\%
Reject: 52\%

Spot B
lots of sunshine
gorgeous beaches and coral reefs ultra-modern hotel
very cold water very strong winds no nightlife

Dictionary Example (Hsee, 1996)

Dictionary A
Entries: 10.000
State: like new

Dictionary Example (Hsee, 1996)

Dictionary B
Entries: 20.000
State: torn cover,
otherwise like new

Evaluability Hypothesis

Weight of an attribute increases with the evaluability of the attribute
Some attributes (e.g., number of entries) are hard to evaluate separately
Dictionary: weight of the 'entries' attribute increases from separate to joint evaluation, causing a preference reversal between JE and SE mode.

Implications of evaluability: less is better!

What about Decision Processes?

Separate: WTP significantly more for A
Joint: WTP significantly more for B
(objectively B is more valuable)

More on defaults: Product customization

- Cars, computers, phone plans
- Bundles of attributes

Order of sequence of attribute decisions should not affect the final 'bundle'

But decision making requires effort and depletion of mental capacity can influence subsequent decisions

- More depletion will result in more default choices for attributes

Study (Levav et al.)

Car configurator (67 decisions!)

- customers can go back
-Default for each attribute
(usually the cheapest)

Manipulation

- Hi-to-Lo group
- Lo-to-Hi group

Target attributes

- Interior color (56)
- Exterior color (26)
-Engine and gearbox (25) -Wheel rims/tires (13) -Steering wheel (10) -Rearview mirror (6) -Interior decor style (4) -Gear shift knob style (4)

Dependent: default choices on each stage

Results: more defaults after depletion

Replace the SUV?

Volkswagen JETTA
1.4TSI 90KW

1 liter per 15.6 km

Toyota PRIUS 1.5VVTI 57KW
1 liter per 23.3 km

What whould you decide?

Replace SUV?

- from 1 l per 9.8 km to 1 l per 13.7 km

Replace family car?

- from 1 I per 15.6 km to 1 I per 23.3 km

The MPG Illusion

Fuel efficiency is becoming a hot topic
Standard metric in the USA is Miles Per Gallon (MPG), comparable with liter per km (for the Dutchies: 1 op X)
European standard has been $1 / 100 \mathrm{~km}$ for decades
Which standard is better to assess fuel efficiency of a car?

What whould you decide?

Replace SUV?

- from 1 I per 9.8 km to 1 I per 13.7 km
- translates into: 10.2 //100km to 7.3 //100km

Replace family car?

- from 1 I per 15.6 km to 1 I per 23.3 km
- translates into: 6.4 l/100km to 4.3 //100km

Application: online customer reviews

The role of customer reviews in online consumer decision making (using process tracing to observe actual review reading behavior)

Some topics:
Relative impact of positive and negative reviews on decision

Order effects in review presentation

Thank You!

Questions?

Contact: M.C.Willemsen@tue.nl

Web:
http://www.vlab.nl/willemsen
http://www.mouselabweb.org/

Endowment effect

Sellers receive a 'Mug'

- They have to choose between receiving a certain amount of money for the Mug or keeping the Mug
Choosers do not receive a 'Mug'
- They have to choose between receiving a certain amount of money or receiving a Mug
Both groups gain something: the only difference is the possession of the Mug

Endowment experiment

Sellers make sequential choices between:

sell mug for \$1	keep mug
sell mug for \$1.25	keep mug
$\ldots .$.	\ldots
sell mug for $\$ 9.25$	keep mug

Choosers make sequential choices between:

receive $\$ 1$	get mug
receive $\$ 1.25$	get mug
\ldots.	\ldots
receive $\$ 9.25$	get mug

Riskless Framing: Asian Disease

US is preparing for unusual Asian disease, which is expected to kill 600 people. Two alternative programs are proposed to combat the disease. Assume that the exact scientific estimates of the two programs are as follows:
Gain-frame:
prog. A [72\%]: 200 people will be saved
prog. B [28\%]:
Loss-frame:
prog. A [22\%]:
prog. B [78\%]:
600 people saved with $p=1 / 3$ 0 people saved with $p=2 / 3$

400 people will die
0 people die with $\mathrm{p}=1 / 3$ 600 people die with $p=2 / 3$

The influence of additional options

principle of independence of irrelevant alternatives

- preference ordering between two options should not be altered by the introduction of additional alternatives

Context effects: asymmetric dominance and extremeness aversion

Examples Asym. Dominance

Option
A (competitor)
B (target)
D_{R} (range decoy)
D_{F} (freq. decoy)
No decoy:
Range decoy:
Freq decoy:

Examples of compromise

35 mm Camera	Set 1 $(\mathrm{n}=106)$	Set 2 $(\mathrm{n}=115)$
Minolta X-370	50%	
Price: $\$ 169.99$	50%	
Minolta Maxxum 3000i Price: $\$ 239.99$		
Minolta Maxxum 7000i Price: $\$ 469.99$		

Note: Participants had reviewed 5 cameras, including these three, prior to making the choice in both conditions (thus not due to an effect of different states of information)

Compromise in the wild.

