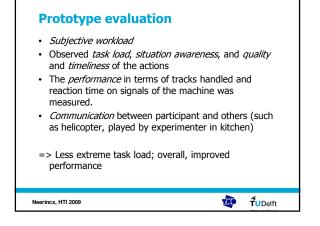
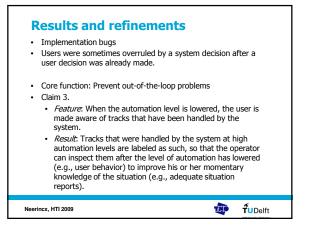
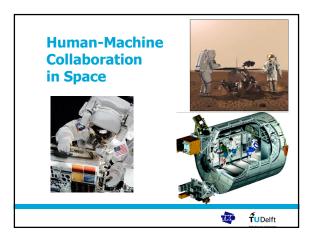


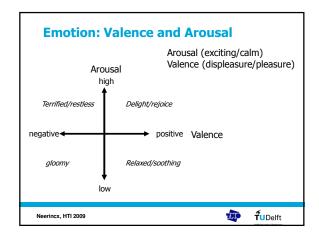
4 Persons			VST-Operator			M-Officer			Total
Sup	H	Exper	TO	LIP	TSS	TO	LIP	TSS	Time
no	no	Little	55.61	3.56	2	41.47	4.15	6	223.00
no	yes	Little	46.41	3.56	2	34.62	4.15	6	200.38
no	no	Average	54.61	2.56	2	40.78	3.15	6	217.00
no	yes	Average	44.13	2.56	1	32.96	3.15	6	201.38
DG	no	Much	52.69	1.47	2	38.88	1.75	6	213.50
DG	yes	Much	43.24	1.47	1	31.90	1.75	6	195.13
2 Persons			VST-Operator		M-Officer			Total	
Sup	IH	Exper	TO	LIP	TSS	TO	LIP	TSS	Time
no	no	Little	71.40	3.65	7	45.76	4.22	5	253.50
no	yes	Little	66.26	3.65	6	42.46	4.22	5	204.88
no	no	Average	70.90	2.65	6	45.49	3.23	5	244.00
no	yes	Average	65.49	2.65	6	42.02	3.23	5	198.13
DG	no	Much	69.94	1.51	6	44.35	1.81	5	234.50
Du	ves	Much	63.04	1.51	6	39.97	1.81	5	195.13



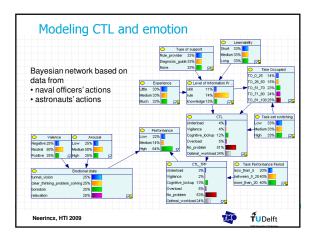




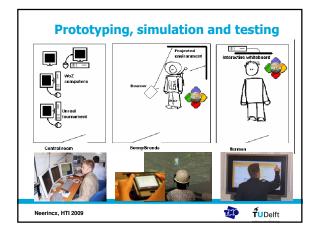
	[UC_Nr]	Example: UseCase 3				
Specify:	[UC_name]	Increasing SA after decreasing LOA				
	Goal	Limit out-of-the-loop problems				
Scenarios	Actor	Team member of Command and Control Centre				
Use cases	Precondition	AA is at the medium or high level;				
Use cases		User has a limited view of tracks as some are				
		handled by the system, limiting his situational				
		awareness to 'dangerous' tracks.				
	Post condition	AA is set at a lower level				
		More tracks will be handled by the user from				
		now on, increasing his or her overall situational				
		awareness.				
	Trigger	Amount of work (pending tracks, tracks				
		requiring user attention) is below a preset				
		threshold level.				
	Main Success	After decrease of automation level, more tracks				
	Scenario	of multiple categories will be handled by the				
		user				
		In doing so, the user quickly gets good				
		situational awareness.				
	Alternative					
	Scenario					
	Satisfies claim	Claim 1, Claim 25				
	Satisfies	Requirement 13				
Neerincx, HTI 2009	requirement					
1						

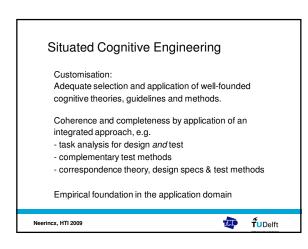


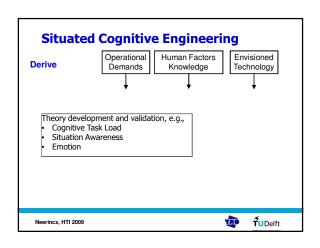


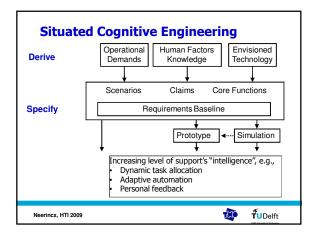


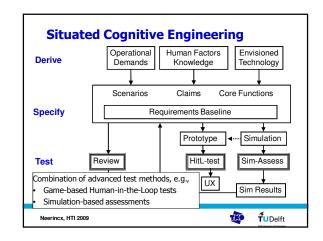











Conclusions Situated CE method proved to work well Scenario refined & validated (alternative scenarios, use cases) Claims refined & confirmed, research issues identified (e.g., acceptance of emotion sensing) · Core functions well-appreciated, can be incrementally developed & tested Туре Unchanged New Total Generic Task Level Requiren 16 5 6 27 Functional Requirements 27 14 6 47 User Interface Requirements 25 15 45 5 16 Technical Requirements 8 2 Operational requirements 1 2 4 Interface Requirements 27 0 28 TOTAL: 104 167 38 10 **tu**Delft

Neerincx, HTI 2009

Digelen, Y. and, Grant, T. and Neerincy, M.A. (forthcoming). Policy-Based Design of conference on Space Mission Challenges for Information Technology. Grence, M. C. et and C. Martina, J.A. (2006). Cognitive task load in naval ship. Conference on Space Mission Challenges for Information Technology. Grence, M.A. (et and the function of the prediction. Ergonomics. Vol. 49, 1238-1264. Grence, M.A. (et and the function of the prediction. Ergonomics. Vol. 49, 1238-1264. Grence, M.A. (1997). Cognitive task load engineering for Crew Support in Space. Personal and Ubiquitous Computing. Mennes, M.A. & Undenberg, J. (2008). Situated Cognitive engineering for complex fast environments. In: Schradengen, J.M.C. Miltello, L. Omerod, J. & Uppiter, R. (Eds.). Naturalistic Design Malaring and Macrocognition (pp. 373-390). Adderstor, Schade Australistic, Design Malaring and Macrocognition (pp. 373-390). Adderstor, B. (2008). Situated Cognitive engineering: Developing, B. Patrick, C. Gilles and L. Philippe (Eds.), H27-2008 - Tind International Conference and Humano Centered Processes, pp. 3-20. Bretingen, France: TELECOM Bretingen. Mernes, M.J., Mabing, M.S., Neerinoz, M.A., Lindenberg, J. and van Oostendorp, H. (2009). Situated Cognitive engineering: Developing, B. Patrick, C. Gilles and L. Philippe (Eds.), H27-2008 - Tind International Conference and Humano Centered Processes, pp. 3-20. Bretingen, France: TELECOM Bretingen. Mernes, M.J., Mabing, M.S., Neerinoz, M.A., Lindenberg, J. and van Oostendorp, H. (2009). Situated Cognitive engineering: Developing, B. Patrick, C. Gilles and L. Philippe (Eds.), H27-2008 - Tind International Conference and Humano Centered Processes, pp. 3-20. Bretingen, France: TELECOM Bretingen. Mernes, M.J., Mabing, M.S., Neerinoz, M.A., Lindenberg, J. and van Oostendorp, H. (2009). Situated Cognitive engineering: Developing and Humano Centered Processes, pp. 3-20. Bretingen, France: TELECO